These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24267688)

  • 1. Asymmetric dopamine loss differentially affects effort to maximize gain or minimize loss.
    Porat O; Hassin-Baer S; Cohen OS; Markus A; Tomer R
    Cortex; 2014 Feb; 51():82-91. PubMed ID: 24267688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of asymmetric dopamine depletion on sensitivity to rewarding and aversive stimuli in Parkinson's disease.
    Maril S; Hassin-Baer S; Cohen OS; Tomer R
    Neuropsychologia; 2013 Apr; 51(5):818-24. PubMed ID: 23422331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine-Dependent Loss Aversion during Effort-Based Decision-Making.
    Chen X; Voets S; Jenkinson N; Galea JM
    J Neurosci; 2020 Jan; 40(3):661-670. PubMed ID: 31727795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Selective Role for Dopamine in Learning to Maximize Reward But Not to Minimize Effort: Evidence from Patients with Parkinson's Disease.
    Skvortsova V; Degos B; Welter ML; Vidailhet M; Pessiglione M
    J Neurosci; 2017 Jun; 37(25):6087-6097. PubMed ID: 28539420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine restores cognitive motivation in Parkinson's disease.
    McGuigan S; Zhou SH; Brosnan MB; Thyagarajan D; Bellgrove MA; Chong TT
    Brain; 2019 Mar; 142(3):719-732. PubMed ID: 30689734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine asymmetry interacts with medication to affect cognition in Parkinson's disease.
    Tomer R; Aharon-Peretz J; Tsitrinbaum Z
    Neuropsychologia; 2007 Jan; 45(2):357-67. PubMed ID: 16876208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parkinson's disease duration determines effect of dopaminergic therapy on ventral striatum function.
    MacDonald AA; Monchi O; Seergobin KN; Ganjavi H; Tamjeedi R; MacDonald PA
    Mov Disord; 2013 Feb; 28(2):153-60. PubMed ID: 23165957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine Selectively Modulates the Outcome of Learning Unnatural Action-Valence Associations.
    Van Wouwe NC; Claassen DO; Neimat JS; Kanoff KE; Wylie SA
    J Cogn Neurosci; 2017 May; 29(5):816-826. PubMed ID: 28129053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Side of symptom onset affects motor dysfunction in Parkinson's disease.
    Haaxma CA; Helmich RC; Borm GF; Kappelle AC; Horstink MW; Bloem BR
    Neuroscience; 2010 Nov; 170(4):1282-5. PubMed ID: 20723583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Dissection of Dopamine Motor and Motivational Functions in Humans.
    Le Bouc R; Rigoux L; Schmidt L; Degos B; Welter ML; Vidailhet M; Daunizeau J; Pessiglione M
    J Neurosci; 2016 Jun; 36(25):6623-33. PubMed ID: 27335396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopaminergic medication increases motivation to exert cognitive control by reducing subjective effort costs in Parkinson's patients.
    Bogdanov M; LoParco S; Otto AR; Sharp M
    Neurobiol Learn Mem; 2022 Sep; 193():107652. PubMed ID: 35724812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novelty seeking and harm avoidance in Parkinson's disease: effects of asymmetric dopamine deficiency.
    Tomer R; Aharon-Peretz J
    J Neurol Neurosurg Psychiatry; 2004 Jul; 75(7):972-5. PubMed ID: 15201352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease.
    Le Heron C; Plant O; Manohar S; Ang YS; Jackson M; Lennox G; Hu MT; Husain M
    Brain; 2018 May; 141(5):1455-1469. PubMed ID: 29672668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberrant reward processing in Parkinson's disease is associated with dopamine cell loss.
    Aarts E; Helmich RC; Janssen MJ; Oyen WJ; Bloem BR; Cools R
    Neuroimage; 2012 Feb; 59(4):3339-46. PubMed ID: 22166793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemispheric dissociation of reward processing in humans: insights from deep brain stimulation.
    Palminteri S; Serra G; Buot A; Schmidt L; Welter ML; Pessiglione M
    Cortex; 2013; 49(10):2834-44. PubMed ID: 23643244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesolimbic Dopamine and the Regulation of Motivated Behavior.
    Salamone JD; Pardo M; Yohn SE; López-Cruz L; SanMiguel N; Correa M
    Curr Top Behav Neurosci; 2016; 27():231-57. PubMed ID: 26323245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors.
    Nunes EJ; Randall PA; Podurgiel S; Correa M; Salamone JD
    Neurosci Biobehav Rev; 2013 Nov; 37(9 Pt A):2015-25. PubMed ID: 23583616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric frontal cortical activity predicts effort expenditure for reward.
    Hughes DM; Yates MJ; Morton EE; Smillie LD
    Soc Cogn Affect Neurosci; 2015 Jul; 10(7):1015-9. PubMed ID: 25479792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of dopamine in cognitive sequence learning: evidence from Parkinson's disease.
    Shohamy D; Myers CE; Grossman S; Sage J; Gluck MA
    Behav Brain Res; 2005 Jan; 156(2):191-9. PubMed ID: 15582105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decisions under risk in Parkinson's disease: preserved evaluation of probability and magnitude.
    Sharp ME; Viswanathan J; McKeown MJ; Appel-Cresswell S; Stoessl AJ; Barton JJ
    Neuropsychologia; 2013 Nov; 51(13):2679-89. PubMed ID: 23954375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.