These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 24268195)

  • 1. Three-phase interactions and interfacial transport phenomena in coacervate/oil/water systems.
    Dardelle G; Erni P
    Adv Colloid Interface Sci; 2014 Apr; 206():79-91. PubMed ID: 24268195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological interfacial properties of plant protein-arabic gum coacervates at the oil-water interface.
    Ducel V; Richard J; Popineau Y; Boury F
    Biomacromolecules; 2005; 6(2):790-6. PubMed ID: 15762643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation Using Plant Proteins: Thermodynamics and Kinetics of Wetting for Simple Zein Coacervates.
    Li X; Erni P; van der Gucht J; de Vries R
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15802-15809. PubMed ID: 32119509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex coacervates formed across liquid interfaces: A self-consistent field analysis.
    Monteillet H; Kleijn JM; Sprakel J; Leermakers FAM
    Adv Colloid Interface Sci; 2017 Jan; 239():17-30. PubMed ID: 27530711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delivery Systems for Low Molecular Weight Payloads: Core/Shell Capsules with Composite Coacervate/Polyurea Membranes.
    Dardelle G; Jacquemond M; Erni P
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28370381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial properties of polymeric complex coacervates from simulation and theory.
    Lytle TK; Salazar AJ; Sing CE
    J Chem Phys; 2018 Oct; 149(16):163315. PubMed ID: 30384702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear viscoelasticity of complex coacervates.
    Liu Y; Winter HH; Perry SL
    Adv Colloid Interface Sci; 2017 Jan; 239():46-60. PubMed ID: 27633928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial tension of complex coacervated mussel adhesive protein according to the Hofmeister series.
    Lim S; Moon D; Kim HJ; Seo JH; Kang IS; Cha HJ
    Langmuir; 2014 Feb; 30(4):1108-15. PubMed ID: 24490867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and structural basis of low interfacial energy of complex coacervates in water.
    Jho Y; Yoo HY; Lin Y; Han S; Hwang DS
    Adv Colloid Interface Sci; 2017 Jan; 239():61-73. PubMed ID: 27499328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells.
    Dowding PJ; Atkin R; Vincent B; Bouillot P
    Langmuir; 2004 Dec; 20(26):11374-9. PubMed ID: 15595759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of wettability and saturation on liquid-liquid interfacial area in porous media.
    Jain V; Bryant S; Sharma M
    Environ Sci Technol; 2003 Feb; 37(3):584-91. PubMed ID: 12630476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical factors affecting microencapsulation by simple coacervation of gelatin.
    Siddiqui O; Taylor H
    J Pharm Pharmacol; 1983 Feb; 35(2):70-3. PubMed ID: 6131989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial tension of evaporating emulsion droplets containing amphiphilic block copolymers: effects of solvent and polymer composition.
    Zhu J; Hayward RC
    J Colloid Interface Sci; 2012 Jan; 365(1):275-9. PubMed ID: 21981970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of bending rigidity and interfacial permeability on the dynamical behavior of water-in-water emulsions.
    Scholten E; Sagis LM; van der Linden E
    J Phys Chem B; 2006 Feb; 110(7):3250-6. PubMed ID: 16494336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of controlled release systems based on water-in-water emulsions: a general theory.
    Sagis LM
    J Control Release; 2008 Oct; 131(1):5-13. PubMed ID: 18691620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation, Structure, and Functionality of Interfacial Layers in Food Emulsions.
    Berton-Carabin CC; Sagis L; Schroën K
    Annu Rev Food Sci Technol; 2018 Mar; 9():551-587. PubMed ID: 29350560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bicontinuous Fluid Structure with Low Cohesive Energy: Molecular Basis for Exceptionally Low Interfacial Tension of Complex Coacervate Fluids.
    Huang KY; Yoo HY; Jho Y; Han S; Hwang DS
    ACS Nano; 2016 May; 10(5):5051-62. PubMed ID: 27152954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the interfacial tension of complex coacervates using field-theoretic simulations.
    Riggleman RA; Kumar R; Fredrickson GH
    J Chem Phys; 2012 Jan; 136(2):024903. PubMed ID: 22260612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilizing Coacervate by Microfluidic Engulfment Induced by Controlled Interfacial Energy.
    Seo KD; Shin S; Yoo HY; Cao J; Lee S; Yoo JW; Kim DS; Hwang DS
    Biomacromolecules; 2020 Feb; 21(2):930-938. PubMed ID: 31769971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.