These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 24268253)
1. On the determining role of network structure titania in silicone against bacterial colonization: mechanism and disruption of biofilm. Depan D; Misra RD Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():221-8. PubMed ID: 24268253 [TBL] [Abstract][Full Text] [Related]
2. The impact of grafted modification of silicone surfaces with quantum-sized materials on protein adsorption and bacterial adhesion. Nune C; Xu W; Misra RD J Biomed Mater Res A; 2012 Dec; 100(12):3197-204. PubMed ID: 22707363 [TBL] [Abstract][Full Text] [Related]
3. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. Stenz L; François P; Fischer A; Huyghe A; Tangomo M; Hernandez D; Cassat J; Linder P; Schrenzel J FEMS Microbiol Lett; 2008 Oct; 287(2):149-55. PubMed ID: 18754790 [TBL] [Abstract][Full Text] [Related]
4. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Li X; Li P; Saravanan R; Basu A; Mishra B; Lim SH; Su X; Tambyah PA; Leong SS Acta Biomater; 2014 Jan; 10(1):258-66. PubMed ID: 24056098 [TBL] [Abstract][Full Text] [Related]
5. Sustained prevention of biofilm formation on a novel silicone matrix suitable for medical devices. Steffensen SL; Vestergaard MH; Groenning M; Alm M; Franzyk H; Nielsen HM Eur J Pharm Biopharm; 2015 Aug; 94():305-11. PubMed ID: 26028273 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms. Peters BM; Ward RM; Rane HS; Lee SA; Noverr MC Antimicrob Agents Chemother; 2013 Jan; 57(1):74-82. PubMed ID: 23070170 [TBL] [Abstract][Full Text] [Related]
8. Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. Skogman ME; Vuorela PM; Fallarero A J Antibiot (Tokyo); 2012 Sep; 65(9):453-9. PubMed ID: 22739537 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of antimicrobial effects of novel implant materials by testing the prevention of biofilm formation using a simple small scale medium-throughput growth inhibition assay. Patenge N; Arndt K; Eggert T; Zietz C; Kreikemeyer B; Bader R; Nebe B; Stranak V; Hippler R; Podbielski A Biofouling; 2012; 28(3):267-77. PubMed ID: 22435853 [TBL] [Abstract][Full Text] [Related]
10. Antibacterial Properties of Silicone Membranes after a Simple Two-Step Immersion Process in Iodine and Silver Nitrate Solutions. Aoki S; Yamakawa K; Kubo K; Takeshita J; Takeuchi M; Nobuoka Y; Wada R; Kikuchi M; Sawai J Biocontrol Sci; 2018; 23(3):97-105. PubMed ID: 30249968 [TBL] [Abstract][Full Text] [Related]
11. A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus. Papa R; Artini M; Cellini A; Tilotta M; Galano E; Pucci P; Amoresano A; Selan L Microb Pathog; 2013 Oct; 63():44-53. PubMed ID: 23811076 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli. Yasuyuki M; Kunihiro K; Kurissery S; Kanavillil N; Sato Y; Kikuchi Y Biofouling; 2010 Oct; 26(7):851-8. PubMed ID: 20938849 [TBL] [Abstract][Full Text] [Related]
13. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Borges A; Saavedra MJ; Simões M Biofouling; 2012; 28(7):755-67. PubMed ID: 22823343 [TBL] [Abstract][Full Text] [Related]
14. The effect of sophorolipids against microbial biofilms on medical-grade silicone. Ceresa C; Fracchia L; Williams M; Banat IM; Díaz De Rienzo MA J Biotechnol; 2020 Feb; 309():34-43. PubMed ID: 31887325 [TBL] [Abstract][Full Text] [Related]
15. XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms. Ooi N; Miller K; Randall C; Rhys-Williams W; Love W; Chopra I J Antimicrob Chemother; 2010 Jan; 65(1):72-8. PubMed ID: 19889790 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers. Amna T; Hassan MS; Barakat NA; Pandeya DR; Hong ST; Khil MS; Kim HY Appl Microbiol Biotechnol; 2012 Jan; 93(2):743-51. PubMed ID: 21761207 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic insights into response of Staphylococcus aureus to bioelectric effect on polypyrrole/chitosan film. Zhang J; Neoh KG; Hu X; Kang ET Biomaterials; 2014 Sep; 35(27):7690-8. PubMed ID: 24934644 [TBL] [Abstract][Full Text] [Related]
18. Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Park JH; Lee JH; Kim CJ; Lee JC; Cho MH; Lee J Biotechnol Lett; 2012 Apr; 34(4):655-61. PubMed ID: 22160331 [TBL] [Abstract][Full Text] [Related]