BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24268270)

  • 1. Carbon nanotube-based bioceramic grafts for electrotherapy of bone.
    Mata D; Horovistiz AL; Branco I; Ferro M; Ferreira NM; Belmonte M; Lopes MA; Silva RF; Oliveira FJ
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():360-8. PubMed ID: 24268270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing strategies for smart electroconductive carbon nanotube-based bioceramic bone grafts.
    Mata D; Oliveira FJ; Ferreira NM; Araújo RF; Fernandes AJ; Lopes MA; Gomes PS; Fernandes MH; Silva RF
    Nanotechnology; 2014 Apr; 25(14):145602. PubMed ID: 24622290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.
    Khalid P; Hussain MA; Rekha PD; Arun AB
    Hum Exp Toxicol; 2015 May; 34(5):548-56. PubMed ID: 25233896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional carbon nanotube/bioceramics modulate the directional growth and activity of osteoblastic cells.
    Mata D; Oliveira FJ; Ferro M; Gomes PS; Fernandes MH; Lopes MA; Silval RF
    J Biomed Nanotechnol; 2014 May; 10(5):725-43. PubMed ID: 24734525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite.
    Herkendell K; Shukla VR; Patel AK; Balani K
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():455-67. PubMed ID: 24268282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites.
    Afzal MA; Kalmodia S; Kesarwani P; Basu B; Balani K
    J Biomater Appl; 2013 May; 27(8):967-78. PubMed ID: 22286208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube reinforced ceramic composites and their performance.
    Arsecularatne JA; Zhang LC
    Recent Pat Nanotechnol; 2007; 1(3):176-85. PubMed ID: 19076031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro.
    Balani K; Anderson R; Laha T; Andara M; Tercero J; Crumpler E; Agarwal A
    Biomaterials; 2007 Feb; 28(4):618-24. PubMed ID: 17007921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation.
    Khang D; Park GE; Webster TJ
    J Biomed Mater Res A; 2008 Jul; 86(1):253-60. PubMed ID: 18186050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical percolation networks of carbon nanotubes in a shear flow.
    Kwon G; Heo Y; Shin K; Sung BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011143. PubMed ID: 22400548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition.
    Hahn BD; Lee JM; Park DS; Choi JJ; Ryu J; Yoon WH; Lee BK; Shin DS; Kim HE
    Acta Biomater; 2009 Oct; 5(8):3205-14. PubMed ID: 19446047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube wires and cables: near-term applications and future perspectives.
    Jarosz P; Schauerman C; Alvarenga J; Moses B; Mastrangelo T; Raffaelle R; Ridgley R; Landi B
    Nanoscale; 2011 Nov; 3(11):4542-53. PubMed ID: 21984338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Customizable Ceramic Nanocomposites Using Carbon Nanotubes.
    Okolo C; Rafique R; Iqbal SS; Subhani T; Saharudin MS; Bhat BR; Inam F
    Molecules; 2019 Sep; 24(17):. PubMed ID: 31480573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites.
    Vilčáková J; Moučka R; Svoboda P; Ilčíková M; Kazantseva N; Hřibová M; Mičušík M; Omastová M
    Molecules; 2012 Nov; 17(11):13157-74. PubMed ID: 23128093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application.
    Li H; Song X; Li B; Kang J; Liang C; Wang H; Yu Z; Qiao Z
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1078-1087. PubMed ID: 28531981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of PC12 cells.
    Cho Y; Borgens RB
    J Biomed Mater Res A; 2010 Nov; 95(2):510-7. PubMed ID: 20665676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of needle-like nano-HA and HA/MWNT composites.
    Meng YH; Tang CY; Tsui CP; Chen DZ
    J Mater Sci Mater Med; 2008 Jan; 19(1):75-81. PubMed ID: 17577639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyacrylonitrile/carbon nanotube composite films.
    Guo H; Minus ML; Jagannathan S; Kumar S
    ACS Appl Mater Interfaces; 2010 May; 2(5):1331-42. PubMed ID: 20441181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new hydroxyapatite-based biocomposite for bone replacement.
    Bellucci D; Sola A; Gazzarri M; Chiellini F; Cannillo V
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1091-101. PubMed ID: 23827547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution.
    Balani K; Chen Y; Harimkar SP; Dahotre NB; Agarwal A
    Acta Biomater; 2007 Nov; 3(6):944-51. PubMed ID: 17646138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.