BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24268270)

  • 21. Recyclable and electrically conducting carbon nanotube composite films.
    Zou G; Jain M; Yang H; Zhang Y; Williams D; Jia Q
    Nanoscale; 2010 Mar; 2(3):418-22. PubMed ID: 20644826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon nanotube-collagen@hydroxyapatite composites with improved mechanical and biological properties fabricated by a multi in situ synthesis process.
    Li H; Sun X; Li Y; Wang H; Li B; Liang C
    Biomed Microdevices; 2020 Sep; 22(4):64. PubMed ID: 32897447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects.
    Usui Y; Aoki K; Narita N; Murakami N; Nakamura I; Nakamura K; Ishigaki N; Yamazaki H; Horiuchi H; Kato H; Taruta S; Kim YA; Endo M; Saito N
    Small; 2008 Feb; 4(2):240-6. PubMed ID: 18205152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and characterization of carbon nanotube reinforced poly(methyl methacrylate) nanocomposites.
    Yu S; Juay YK; Young MS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1852-7. PubMed ID: 18572586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites.
    White AA; Kinloch IA; Windle AH; Best SM
    J R Soc Interface; 2010 Oct; 7 Suppl 5(Suppl 5):S529-39. PubMed ID: 20573629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Research development of hydroxyapatite-based composites used as hard tissue replacement].
    Ning C; Dai K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):550-4. PubMed ID: 14565037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes.
    Meng D; Rath SN; Mordan N; Salih V; Kneser U; Boccaccini AR
    J Biomed Mater Res A; 2011 Dec; 99(3):435-44. PubMed ID: 21887738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon nanotubes reinforced composites for biomedical applications.
    Wang W; Zhu Y; Liao S; Li J
    Biomed Res Int; 2014; 2014():518609. PubMed ID: 24707488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.
    Zhao H; Bai J
    ACS Appl Mater Interfaces; 2015 May; 7(18):9652-9. PubMed ID: 25898271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes.
    Ogihara N; Usui Y; Aoki K; Shimizu M; Narita N; Hara K; Nakamura K; Ishigaki N; Takanashi S; Okamoto M; Kato H; Haniu H; Ogiwara N; Nakayama N; Taruta S; Saito N
    Nanomedicine (Lond); 2012 Jul; 7(7):981-93. PubMed ID: 22401267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds.
    Zhou Z; Liu X; Wu W; Park S; Miller Ii AL; Terzic A; Lu L
    Biomater Sci; 2018 Aug; 6(9):2375-2385. PubMed ID: 30019709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications.
    Misra SK; Ohashi F; Valappil SP; Knowles JC; Roy I; Silva SR; Salih V; Boccaccini AR
    Acta Biomater; 2010 Mar; 6(3):735-42. PubMed ID: 19800427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.
    Ogihara H; Kibayashi H; Saji T
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4891-7. PubMed ID: 22900673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite-carbon nanotube composite coating.
    Lahiri D; Benaduce AP; Rouzaud F; Solomon J; Keshri AK; Kos L; Agarwal A
    J Biomed Mater Res A; 2011 Jan; 96(1):1-12. PubMed ID: 20945477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites.
    Choi K; Yu C
    PLoS One; 2012; 7(9):e44977. PubMed ID: 23024778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density.
    Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE
    ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microstructure and Thermal Conductivity of Carbon Nanotube Reinforced Cu Composites.
    Chen P; Zhang J; Shen Q; Luo G; Dai Y; Wang C; Li M; Zhang L
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2447-452. PubMed ID: 29648750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New bioactive glass-ceramic: synthesis and application in PMMA bone cement composites.
    Abd Samad H; Jaafar M; Othman R; Kawashita M; Abdul Razak NH
    Biomed Mater Eng; 2011; 21(4):247-58. PubMed ID: 22182792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.