These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1099 related articles for article (PubMed ID: 24268272)
1. Polyethylenimine-immobilized core-shell nanoparticles: synthesis, characterization, and biocompatibility test. Ratanajanchai M; Soodvilai S; Pimpha N; Sunintaboon P Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():377-83. PubMed ID: 24268272 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property. Inphonlek S; Pimpha N; Sunintaboon P Colloids Surf B Biointerfaces; 2010 Jun; 77(2):219-26. PubMed ID: 20189779 [TBL] [Abstract][Full Text] [Related]
3. Photo-cured PMMA/PEI core/shell nanoparticles surface-modified with Gd-DTPA for T1 MR imaging. Ratanajanchai M; Lee DH; Sunintaboon P; Yang SG J Colloid Interface Sci; 2014 Feb; 415():70-6. PubMed ID: 24267331 [TBL] [Abstract][Full Text] [Related]
4. Visible light-induced surfactant-free emulsion polymerization using camphorquinone/tertiary amine as the initiating system for the synthesis of amine-functionalized colloidal nanoparticles. Ratanajanchai M; Tanwilai D; Sunintaboon P J Colloid Interface Sci; 2013 Nov; 409():25-31. PubMed ID: 23978285 [TBL] [Abstract][Full Text] [Related]
5. Gene delivery efficacy of polyethyleneimine-introduced chitosan shell/poly(methyl methacrylate) core nanoparticles for rat mesenchymal stem cells. Pimpha N; Sunintaboon P; Inphonlek S; Tabata Y J Biomater Sci Polym Ed; 2010; 21(2):205-23. PubMed ID: 20092685 [TBL] [Abstract][Full Text] [Related]
6. Polyethylenimine-based amphiphilic core-shell nanoparticles: study of gene delivery and intracellular trafficking. Siu YS; Li L; Leung MF; Lee KL; Li P Biointerphases; 2012 Dec; 7(1-4):16. PubMed ID: 22589059 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) "raspberry"-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization. Ramli RA; Hashim S; Laftah WA J Colloid Interface Sci; 2013 Feb; 391():86-94. PubMed ID: 23123033 [TBL] [Abstract][Full Text] [Related]
8. Preparation of polyethyleneimine incorporated poly(D,L-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery. Katas H; Cevher E; Alpar HO Int J Pharm; 2009 Mar; 369(1-2):144-54. PubMed ID: 19010405 [TBL] [Abstract][Full Text] [Related]
9. Amphiphilic core-shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microRNA to Kupffer cells. Liu Z; Niu D; Zhang J; Zhang W; Yao Y; Li P; Gong J Int J Nanomedicine; 2016; 11():2785-97. PubMed ID: 27366061 [TBL] [Abstract][Full Text] [Related]
10. Facile synthesis of silver immobilized-poly(methyl methacrylate)/polyethyleneimine core-shell particle composites. Jenjob S; Tharawut T; Sunintaboon P Mater Sci Eng C Mater Biol Appl; 2012 Oct; 32(7):2068-2072. PubMed ID: 34062697 [TBL] [Abstract][Full Text] [Related]
11. Dual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation. Majewski AP; Schallon A; Jérôme V; Freitag R; Müller AH; Schmalz H Biomacromolecules; 2012 Mar; 13(3):857-66. PubMed ID: 22296556 [TBL] [Abstract][Full Text] [Related]
12. Phase behavior of poly(sulfobetaine methacrylate)-grafted silica nanoparticles and their stability in protein solutions. Dong Z; Mao J; Yang M; Wang D; Bo S; Ji X Langmuir; 2011 Dec; 27(24):15282-91. PubMed ID: 22124164 [TBL] [Abstract][Full Text] [Related]
13. Amine-containing core-shell nanoparticles as potential drug carriers for intracellular delivery. Feng M; Li P J Biomed Mater Res A; 2007 Jan; 80(1):184-93. PubMed ID: 17019724 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of core-shell nanoparticles and their influence on the mechanical behavior of acrylic bone cements. Gutiérrez-Mejía A; Herrera-Kao W; Duarte-Aranda S; Loría-Bastarrachea MI; Canché-Escamilla G; Moscoso-Sánchez FJ; Cauich-Rodríguez JV; Cervantes-Uc JM Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1737-43. PubMed ID: 23827631 [TBL] [Abstract][Full Text] [Related]
15. Poly(ethylene oxide) grafted with short polyethylenimine gives DNA polyplexes with superior colloidal stability, low cytotoxicity, and potent in vitro gene transfection under serum conditions. Zheng M; Zhong Z; Zhou L; Meng F; Peng R; Zhong Z Biomacromolecules; 2012 Mar; 13(3):881-8. PubMed ID: 22339316 [TBL] [Abstract][Full Text] [Related]
16. Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles. Nimesh S; Aggarwal A; Kumar P; Singh Y; Gupta KC; Chandra R Int J Pharm; 2007 Jun; 337(1-2):265-74. PubMed ID: 17254724 [TBL] [Abstract][Full Text] [Related]
17. Magnetic Fe2O3-polystyrene/PPy core/shell particles: bioreactivity and self-assembly. Mangeney C; Fertani M; Bousalem S; Zhicai M; Ammar S; Herbst F; Beaunier P; Elaissari A; Chehimi MM Langmuir; 2007 Oct; 23(22):10940-9. PubMed ID: 17900197 [TBL] [Abstract][Full Text] [Related]
18. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug. Prabha G; Raj V Biomed Pharmacother; 2016 May; 80():173-182. PubMed ID: 27133054 [TBL] [Abstract][Full Text] [Related]