BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 24268285)

  • 1. Effects of strain and strain-induced α'-martensite on passive films in AISI 304 austenitic stainless steel.
    Lv J; Luo H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():484-90. PubMed ID: 24268285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.
    Jinlong L; Tongxiang L; Chen W; Limin D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():558-63. PubMed ID: 26952459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of in site strain on passivated property of the 316L stainless steels.
    Jinlong L; Tongxiang L; Chen W; Ting G
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():32-6. PubMed ID: 26838820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrosion behavior of sensitized duplex stainless steel.
    Torres FJ; Panyayong W; Rogers W; Velasquez-Plata D; Oshida Y; Moore BK
    Biomed Mater Eng; 1998; 8(1):25-36. PubMed ID: 9713683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():196-203. PubMed ID: 25492189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance.
    Wang Y; Zhou Z; Wu W; Gong J
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29160830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():455-66. PubMed ID: 24857514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of C and N on Strain-Induced Martensite Formation in Fe-15Cr-7Mn-4Ni-0.5Si Austenitic Steel.
    Quitzke C; Huang Q; Biermann H; Volkova O; Wendler M
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol-gel treatment.
    Vallet-Regí M; Izquierdo-Barba I; Gil FJ
    J Biomed Mater Res A; 2003 Nov; 67(2):674-8. PubMed ID: 14566812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro surface corrosion of stainless steel and NiTi orthodontic appliances.
    Shin JS; Oh KT; Hwang CJ
    Aust Orthod J; 2003 Apr; 19(1):13-8. PubMed ID: 12790351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Martensitic transformation of austenitic stainless steel orthodontic wires during intraoral exposure.
    Izquierdo PP; de Biasi RS; Elias CN; Nojima LI
    Am J Orthod Dentofacial Orthop; 2010 Dec; 138(6):714.e1-5; discussion 714-5. PubMed ID: 21130328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ductility improvement due to martensite α' decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants.
    Sallica-Leva E; Caram R; Jardini AL; Fogagnolo JB
    J Mech Behav Biomed Mater; 2016 Feb; 54():149-58. PubMed ID: 26458113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel.
    Nie FL; Wang SG; Wang YB; Wei SC; Zheng YF
    Dent Mater; 2011 Jul; 27(7):677-83. PubMed ID: 21514955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Austenitic and duplex stainless steels in simulated physiological solution characterized by electrochemical and X-ray photoelectron spectroscopy studies.
    Kocijan A; Conradi M; Schön PM
    J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):799-807. PubMed ID: 22331841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate effects on transformation kinetics in a metastable austenitic stainless steel.
    Alturk R; Luecke WE; Mates S; Araujo A; Raghavan KS; Abu-Farha F
    Procedia Eng; 2017; 207():. PubMed ID: 33029261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel.
    Xi T; Shahzad MB; Xu D; Sun Z; Zhao J; Yang C; Qi M; Yang K
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1079-1085. PubMed ID: 27987662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel.
    Stio M; Martinesi M; Treves C; Borgioli F
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1081-91. PubMed ID: 27612806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanical behavior of austenitic stainless steel with nano/ultrafine grains and comparison with micrometer austenitic grains counterpart and their biological functions.
    Gong N; Hu C; Hu B; An B; Misra RDK
    J Mech Behav Biomed Mater; 2020 Jan; 101():103433. PubMed ID: 31539734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Rolling Temperature on Microstructure Evolution and Mechanical Properties of AISI316LN Austenitic Stainless Steel.
    Xiong Y; Yue Y; He T; Lu Y; Ren F; Cao W
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30158476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Facile Method to Modify the Characteristics and Corrosion Behavior of 304 Stainless Steel by Surface Nanostructuring toward Biomedical Applications.
    Thangaraj B; Nellaiappan SN; Kulandaivelu R; Lee MH; Nishimura T
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17731-47. PubMed ID: 26196218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.