These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 24268718)
21. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Beuckels A; Smolders E; Muylaert K Water Res; 2015 Jun; 77():98-106. PubMed ID: 25863319 [TBL] [Abstract][Full Text] [Related]
22. Effects of Nitrogen Supplementation Status on CO Cho JM; Oh YK; Park WK; Chang YK J Microbiol Biotechnol; 2020 Aug; 30(8):1235-1243. PubMed ID: 32855379 [TBL] [Abstract][Full Text] [Related]
23. Microalgae carbon fixation integrated with organic matters recycling from soybean wastewater: Effect of pH on the performance of hybrid system. Song C; Han X; Qiu Y; Liu Z; Li S; Kitamura Y Chemosphere; 2020 Jun; 248():126094. PubMed ID: 32041073 [TBL] [Abstract][Full Text] [Related]
24. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide. Liu X; Ying K; Chen G; Zhou C; Zhang W; Zhang X; Cai Z; Holmes T; Tao Y Chemosphere; 2017 Nov; 186():977-985. PubMed ID: 28835006 [TBL] [Abstract][Full Text] [Related]
25. In situ biological CO Razzak SA Bioprocess Biosyst Eng; 2019 Jan; 42(1):93-105. PubMed ID: 30259109 [TBL] [Abstract][Full Text] [Related]
26. Maximizing biomass productivity and CO2 biofixation of microalga, Scenedesmus sp. by using sodium hydroxide. Nayak M; Rath SS; Thirunavoukkarasu M; Panda PK; Mishra BK; Mohanty RC J Microbiol Biotechnol; 2013 Sep; 23(9):1260-8. PubMed ID: 23727795 [TBL] [Abstract][Full Text] [Related]
27. Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO Mousavi S; Najafpour GD; Mohammadi M; Seifi MH Bioprocess Biosyst Eng; 2018 Apr; 41(4):519-530. PubMed ID: 29299676 [TBL] [Abstract][Full Text] [Related]
28. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide. Ma S; Li D; Yu Y; Li D; Yadav RS; Feng Y Environ Pollut; 2019 Sep; 252(Pt A):344-351. PubMed ID: 31158663 [TBL] [Abstract][Full Text] [Related]
29. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae. Yadav A; Choudhary P; Atri N; Teir S; Mutnuri S Environ Sci Pollut Res Int; 2016 Nov; 23(22):22284-22291. PubMed ID: 27032631 [TBL] [Abstract][Full Text] [Related]
30. Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Sacristán de Alva M; Luna-Pabello VM; Cadena E; Ortíz E Bioresour Technol; 2013 Oct; 146():744-748. PubMed ID: 23932286 [TBL] [Abstract][Full Text] [Related]
31. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Yadav G; Dash SK; Sen R Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810 [TBL] [Abstract][Full Text] [Related]
32. Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation. Ji MK; Yun HS; Park S; Lee H; Park YT; Bae S; Ham J; Choi J Bioresour Technol; 2015 Mar; 179():624-628. PubMed ID: 25553643 [TBL] [Abstract][Full Text] [Related]
33. Nutrient composition of culture media induces different patterns of CO Choix FJ; Polster E; Corona-González RI; Snell-Castro R; Méndez-Acosta HO Bioprocess Biosyst Eng; 2017 Dec; 40(12):1733-1742. PubMed ID: 28801770 [TBL] [Abstract][Full Text] [Related]
34. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Krustok I; Odlare M; Truu J; Nehrenheim E Bioresour Technol; 2016 Feb; 202():238-43. PubMed ID: 26716890 [TBL] [Abstract][Full Text] [Related]
35. Isolation and heterotrophic cultivation of mixotrophic microalgae strains for domestic wastewater treatment and lipid production under dark condition. Zhang TY; Wu YH; Zhu SF; Li FM; Hu HY Bioresour Technol; 2013 Dec; 149():586-9. PubMed ID: 24140357 [TBL] [Abstract][Full Text] [Related]
36. Implications of sludge liquor addition for wastewater-based open pond cultivation of microalgae for biofuel generation and pollutant remediation. Osundeko O; Pittman JK Bioresour Technol; 2014; 152():355-63. PubMed ID: 24315940 [TBL] [Abstract][Full Text] [Related]
37. Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Jebali A; Acién FG; Gómez C; Fernández-Sevilla JM; Mhiri N; Karray F; Dhouib A; Molina-Grima E; Sayadi S Bioresour Technol; 2015 Dec; 198():424-30. PubMed ID: 26409854 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation. Wang XX; Wu YH; Zhang TY; Xu XQ; Dao GH; Hu HY Water Res; 2016 May; 94():215-224. PubMed ID: 26954575 [TBL] [Abstract][Full Text] [Related]
39. Bioremediation potential of the Chlorella and Scenedesmus microalgae in explosives production effluents. Condori MAM; Condori MM; Gutierrez MEV; Choix FJ; García-Camacho F Sci Total Environ; 2024 Apr; 920():171004. PubMed ID: 38369159 [TBL] [Abstract][Full Text] [Related]
40. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. Viegas C; Gouveia L; Gonçalves M J Environ Manage; 2021 May; 286():112187. PubMed ID: 33609932 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]