BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 24268791)

  • 1. Fine characterization of OsPHO2 knockout mutants reveals its key role in Pi utilization in rice.
    Cao Y; Yan Y; Zhang F; Wang HD; Gu M; Wu XN; Sun SB; Xu GH
    J Plant Physiol; 2014 Feb; 171(3-4):340-8. PubMed ID: 24268791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two h-Type Thioredoxins Interact with the E2 Ubiquitin Conjugase PHO2 to Fine-Tune Phosphate Homeostasis in Rice.
    Ying Y; Yue W; Wang S; Li S; Wang M; Zhao Y; Wang C; Mao C; Whelan J; Shou H
    Plant Physiol; 2017 Jan; 173(1):812-824. PubMed ID: 27895204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice.
    Sun S; Gu M; Cao Y; Huang X; Zhang X; Ai P; Zhao J; Fan X; Xu G
    Plant Physiol; 2012 Aug; 159(4):1571-81. PubMed ID: 22649273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice.
    Dai X; Wang Y; Yang A; Zhang WH
    Plant Physiol; 2012 May; 159(1):169-83. PubMed ID: 22395576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PROTEIN PHOSPHATASE95 Regulates Phosphate Homeostasis by Affecting Phosphate Transporter Trafficking in Rice.
    Yang Z; Yang J; Wang Y; Wang F; Mao W; He Q; Xu J; Wu Z; Mao C
    Plant Cell; 2020 Mar; 32(3):740-757. PubMed ID: 31919298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis with different leaf blades identifies the phloem-specific phosphate transporter OsPHO1;3 required for phosphate homeostasis in rice.
    Yan M; Xie M; Chen W; Si WJ; Lin HH; Yang J
    Plant J; 2024 May; 118(3):905-919. PubMed ID: 38251949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice.
    Hu B; Zhu C; Li F; Tang J; Wang Y; Lin A; Liu L; Che R; Chu C
    Plant Physiol; 2011 Jul; 156(3):1101-15. PubMed ID: 21317339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions.
    Zhang J; Gu M; Liang R; Shi X; Chen L; Hu X; Wang S; Dai X; Qu H; Li H; Xu G
    New Phytol; 2021 Feb; 229(3):1598-1614. PubMed ID: 32936937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GWAS unravels acid phosphatase ACP2 as a photosynthesis regulator under phosphate starvation conditions through modulating serine metabolism in rice.
    Liu S; Xu Z; Essemine J; Liu Y; Liu C; Zhang F; Iqbal Z; Qu M
    Plant Commun; 2024 Mar; ():100885. PubMed ID: 38504521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple high-throughput protocol for the extraction and quantification of inorganic phosphate in rice leaves.
    Pinit S; Chadchawan S; Chaiwanon J
    Appl Plant Sci; 2020 Oct; 8(10):e11395. PubMed ID: 33163294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine mapping of a major QTL, qKl-1BL controlling kernel length in common wheat.
    Qin R; Cao M; Dong J; Chen L; Guo H; Guo Q; Cai Y; Han L; Huang Z; Xu N; Yang A; Xu H; Wu Y; Sun H; Liu X; Ling H; Zhao C; Li J; Cui F
    Theor Appl Genet; 2024 Mar; 137(3):67. PubMed ID: 38441674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Omics Analysis Reveals Mechanisms of Strong Phosphorus Adaptation in Tea Plant Roots.
    Liu X; Tian J; Liu G; Sun L
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569806
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Huertas R; Torres-Jerez I; Curtin SJ; Scheible W; Udvardi M
    Front Plant Sci; 2023; 14():1211107. PubMed ID: 37409286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Phosphorylation Response to Abiotic Stress in Plants.
    Damaris RN; Yang P
    Methods Mol Biol; 2021; 2358():17-43. PubMed ID: 34270044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-based approaches for clarification of nutritional responses and improvement of crop production.
    Takehisa H; Sato Y
    Breed Sci; 2021 Feb; 71(1):76-88. PubMed ID: 33762878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay.
    Gho YS; Choi H; Moon S; Song MY; Park HE; Kim DH; Ha SH; Jung KH
    Front Plant Sci; 2020; 11():585561. PubMed ID: 33424882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CASEIN KINASE2-Dependent Phosphorylation of PHOSPHATE2 Fine-tunes Phosphate Homeostasis in Rice.
    Wang F; Deng M; Chen J; He Q; Jia X; Guo H; Xu J; Liu Y; Zhang S; Shou H; Mao C
    Plant Physiol; 2020 May; 183(1):250-262. PubMed ID: 32161109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upstream Open Reading Frame and Phosphate-Regulated Expression of Rice
    Yang SY; Lu WC; Ko SS; Sun CM; Hung JC; Chiou TJ
    Plant Physiol; 2020 Jan; 182(1):393-407. PubMed ID: 31659125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron and callose homeostatic regulation in rice roots under low phosphorus.
    Ding Y; Wang Z; Ren M; Zhang P; Li Z; Chen S; Ge C; Wang Y
    BMC Plant Biol; 2018 Dec; 18(1):326. PubMed ID: 30514218
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.