These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 24268820)

  • 1. The use of quantitative structure-activity relationship models to develop optimized processes for the removal of tobacco host cell proteins during biopharmaceutical production.
    Buyel JF; Woo JA; Cramer SM; Fischer R
    J Chromatogr A; 2013 Dec; 1322():18-28. PubMed ID: 24268820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generic chromatography-based purification strategies accelerate the development of downstream processes for biopharmaceutical proteins produced in plants.
    Buyel JF; Fischer R
    Biotechnol J; 2014 Apr; 9(4):566-77. PubMed ID: 24478119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision analysis for the determination of steric mass action parameters using eight tobacco host cell proteins.
    Bernau CR; Jäpel RC; Hübbers JW; Nölting S; Opdensteinen P; Buyel JF
    J Chromatogr A; 2021 Aug; 1652():462379. PubMed ID: 34256268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale-down models to optimize a filter train for the downstream purification of recombinant pharmaceutical proteins produced in tobacco leaves.
    Buyel JF; Fischer R
    Biotechnol J; 2014 Mar; 9(3):415-25. PubMed ID: 24323869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Tobacco Host Cell Protein Removal Methods by Blanching Intact Plants or by Heat Treatment of Extracts.
    Buyel JF; Hubbuch J; Fischer R
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction and downstream processing of plant-derived recombinant proteins.
    Buyel JF; Twyman RM; Fischer R
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):902-13. PubMed ID: 25922318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of transgenic oryzacystatin-I-expressing plants enhances recombinant protein production.
    Pillay P; Kibido T; du Plessis M; van der Vyver C; Beyene G; Vorster BJ; Kunert KJ; Schlüter U
    Appl Biochem Biotechnol; 2012 Nov; 168(6):1608-20. PubMed ID: 22965305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ectopic expression of a conifer Abscisic Acid Insensitive3 transcription factor induces high-level synthesis of recombinant human alpha-L-iduronidase in transgenic tobacco leaves.
    Kermode AR; Zeng Y; Hu X; Lauson S; Abrams SR; He X
    Plant Mol Biol; 2007 Apr; 63(6):763-76. PubMed ID: 17203373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of a tobacco lipid transfer protein exhibiting new biophysical and biological features.
    Da Silva P; Landon C; Industri B; Marais A; Marion D; Ponchet M; Vovelle F
    Proteins; 2005 May; 59(2):356-67. PubMed ID: 15726627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production.
    Duwadi K; Chen L; Menassa R; Dhaubhadel S
    PLoS One; 2015; 10(7):e0130556. PubMed ID: 26148064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quality assessment of recombinant proteins produced in plants.
    Medrano G; Dolan MC; Condori J; Radin DN; Cramer CL
    Methods Mol Biol; 2012; 824():535-64. PubMed ID: 22160919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From gene to harvest: insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants.
    Sack M; Rademacher T; Spiegel H; Boes A; Hellwig S; Drossard J; Stoger E; Fischer R
    Plant Biotechnol J; 2015 Oct; 13(8):1094-105. PubMed ID: 26214282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Putative signal peptides of two BURP proteins can direct proteins to their destinations in tobacco cell system.
    Tang Y; Ou Z; Qiu J; Mi Z
    Biotechnol Lett; 2014 Nov; 36(11):2343-9. PubMed ID: 25048229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyclonal antibodies for specific detection of tobacco host cell proteins can be efficiently generated following RuBisCO depletion and the removal of endotoxins.
    Arfi ZA; Hellwig S; Drossard J; Fischer R; Buyel JF
    Biotechnol J; 2016 Mar; 11(4):507-18. PubMed ID: 26632519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nectarin IV, a potent endoglucanase inhibitor secreted into the nectar of ornamental tobacco plants. Isolation, cloning, and characterization.
    Naqvi SM; Harper A; Carter C; Ren G; Guirgis A; York WS; Thornburg RW
    Plant Physiol; 2005 Nov; 139(3):1389-400. PubMed ID: 16244157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative analysis of recombinant protein expression in different biofactories: bacteria, insect cells and plant systems.
    Gecchele E; Merlin M; Brozzetti A; Falorni A; Pezzotti M; Avesani L
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25867956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repression of the DCL2 and DCL4 genes in Nicotiana benthamiana plants for the transient expression of recombinant proteins.
    Matsuo K; Matsumura T
    J Biosci Bioeng; 2017 Aug; 124(2):215-220. PubMed ID: 28336416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR models for prediction of chromatographic behavior of homologous Fab variants.
    Robinson JR; Karkov HS; Woo JA; Krogh BO; Cramer SM
    Biotechnol Bioeng; 2017 Jun; 114(6):1231-1240. PubMed ID: 27943241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Means to optimize protein expression in transgenic plants.
    Ullrich KK; Hiss M; Rensing SA
    Curr Opin Biotechnol; 2015 Apr; 32():61-67. PubMed ID: 25448234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cedar allergen harvest from tobacco: plant biotechnology for recombinant allergens.
    Takai T
    Int Arch Allergy Immunol; 2010; 153(4):431-3. PubMed ID: 20628258
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.