These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 24269150)
21. Isoleucyl-tRNA synthetase from bakers' yeast: variable discrimination between tRNAIle and tRNAVal and different pathways of cognate and noncognate aminoacylation under standard conditions, in the presence of pyrophosphatase, elongation factor Tu-GTP complex, and spermine. Freist W; Sternbach H Biochemistry; 1984 Nov; 23(24):5742-52. PubMed ID: 6151853 [TBL] [Abstract][Full Text] [Related]
22. Mutational separation of two pathways for editing by a class I tRNA synthetase. Hendrickson TL; Nomanbhoy TK; de Crécy-Lagard V; Fukai S; Nureki O; Yokoyama S; Schimmel P Mol Cell; 2002 Feb; 9(2):353-62. PubMed ID: 11864608 [TBL] [Abstract][Full Text] [Related]
23. Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis. Horswill AR; Escalante-Semerena JC Biochemistry; 2002 Feb; 41(7):2379-87. PubMed ID: 11841231 [TBL] [Abstract][Full Text] [Related]
24. Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis. Goyal A; Verma P; Anandhakrishnan M; Gokhale RS; Sankaranarayanan R J Mol Biol; 2012 Feb; 416(2):221-38. PubMed ID: 22206988 [TBL] [Abstract][Full Text] [Related]
25. Isophthalate:coenzyme A ligase initiates anaerobic degradation of xenobiotic isophthalate. Junghare M; Frey J; Naji KM; Spiteller D; Vaaje-Kolstad G; Schink B BMC Microbiol; 2022 Sep; 22(1):227. PubMed ID: 36171563 [TBL] [Abstract][Full Text] [Related]
26. Aminoacylation of coenzyme A and pantetheine by aminoacyl-tRNA synthetases: possible link between noncoded and coded peptide synthesis. Jakubowski H Biochemistry; 1998 Apr; 37(15):5147-53. PubMed ID: 9548745 [TBL] [Abstract][Full Text] [Related]
27. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600: discrimination between isoleucine and valine with modulated accuracy. Freist W; Cramer F Biol Chem Hoppe Seyler; 1987 Mar; 368(3):229-37. PubMed ID: 3297096 [TBL] [Abstract][Full Text] [Related]
28. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase. Cvetesic N; Bilus M; Gruic-Sovulj I J Biol Chem; 2015 May; 290(22):13981-91. PubMed ID: 25873392 [TBL] [Abstract][Full Text] [Related]
29. [Interaction between aminoacyl-tRNA synthetases (AAS) and cell division in a temperature sensitive filamentous mutant of Bacillus subtilis SB 19. I. Characterization of AAS]. Süss J; Mach H; Mach F Z Allg Mikrobiol; 1976; 16(4):301-14. PubMed ID: 822598 [No Abstract] [Full Text] [Related]
30. Tryptophanyl-tRNA synthetase from Bacillus subtilis. Characterization and role of hydrophobicity in substrate recognition. Xu ZJ; Love ML; Ma LY; Blum M; Bronskill PM; Bernstein J; Grey AA; Hofmann T; Camerman N; Wong JT J Biol Chem; 1989 Mar; 264(8):4304-11. PubMed ID: 2494170 [TBL] [Abstract][Full Text] [Related]
31. Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain. Gruic-Sovulj I; Rokov-Plavec J; Weygand-Durasevic I FEBS Lett; 2007 Oct; 581(26):5110-4. PubMed ID: 17931630 [TBL] [Abstract][Full Text] [Related]
32. Aminoalkyl adenylate and aminoacyl sulfamate intermediate analogues differing greatly in affinity for their cognate Staphylococcus aureus aminoacyl tRNA synthetases. Forrest AK; Jarvest RL; Mensah LM; O'Hanlon PJ; Pope AJ; Sheppard RJ Bioorg Med Chem Lett; 2000 Aug; 10(16):1871-4. PubMed ID: 10969988 [TBL] [Abstract][Full Text] [Related]
33. Direct experimental evidence for kinetic proofreading in amino acylation of tRNAIle. Hopfield JJ; Yamane T; Yue V; Coutts SM Proc Natl Acad Sci U S A; 1976 Apr; 73(4):1164-8. PubMed ID: 1063397 [TBL] [Abstract][Full Text] [Related]
34. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate. Jakubowski H Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907 [TBL] [Abstract][Full Text] [Related]
35. Reactions of the aminoacyl-tRNA synthetase-aminoacyl adenylate complex and amino acid derivatives. A new approach to peptide synthesis. Nakajima H; Kitabatake S; Tsurutani R; Tomioka I; Yamamoto K; Imahori K Biochim Biophys Acta; 1984 Oct; 790(2):197-9. PubMed ID: 6487635 [TBL] [Abstract][Full Text] [Related]
36. ATP binding plays a role in the selection of amino acid substrate by aminoacyl-tRNA synthetases. Tonomura B; Kakitani M; Ohkubo Y; Shima H; Hiromi K Ann N Y Acad Sci; 1990; 613():489-93. PubMed ID: 2075999 [No Abstract] [Full Text] [Related]
37. Acyl-CoA hydrolysis by the high molecular weight protein 1 subunit of yersiniabactin synthetase: mutational evidence for a cascade of four acyl-enzyme intermediates during hydrolytic editing. Suo Z; Chen H; Walsh CT Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14188-93. PubMed ID: 11106385 [TBL] [Abstract][Full Text] [Related]
38. Evidence for single mechanism for aminoacyl-tRNA synthetases including aminoacyl adenylates as intermediates. Kim JJ; Chakraburtty K; Mehler AH J Biol Chem; 1977 Apr; 252(8):2698-701. PubMed ID: 323252 [TBL] [Abstract][Full Text] [Related]