BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24269175)

  • 1. A pelvic implant orthosis in rodents, for spinal cord injury rehabilitation, and for brain machine interface research: construction, surgical implantation and validation.
    Udoekwere UI; Oza CS; Giszter SF
    J Neurosci Methods; 2014 Jan; 222():199-206. PubMed ID: 24269175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.
    Udoekwere UI; Oza CS; Giszter SF
    J Neurosci; 2016 Aug; 36(32):8341-55. PubMed ID: 27511008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats.
    Hamlin M; Traughber T; Reinkensmeyer DJ; de Leon RD
    J Neurosci Methods; 2015 May; 246():134-41. PubMed ID: 25794460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.
    Oza CS; Giszter SF
    J Neurosci; 2015 May; 35(18):7174-89. PubMed ID: 25948267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.
    Oza CS; Giszter SF
    Exp Neurol; 2014 Jun; 256():57-69. PubMed ID: 24704619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscous field training induces after effects but hinders recovery of overground locomotion following spinal cord injury in rats.
    Neckel ND; Dai H
    Behav Brain Res; 2021 Aug; 412():113415. PubMed ID: 34153426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of hindlimb locomotor strength in spinal cord transected rats through animal-robot contact force.
    Nessler JA; Moustafa-Bayoumi M; Soto D; Duhon J; Schmitt R
    J Biomech Eng; 2011 Dec; 133(12):121007. PubMed ID: 22206424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-specificity vs. ceiling effect: step-training in shallow water after spinal cord injury.
    Kuerzi J; Brown EH; Shum-Siu A; Siu A; Burke D; Morehouse J; Smith RR; Magnuson DS
    Exp Neurol; 2010 Jul; 224(1):178-87. PubMed ID: 20302862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel spatiotemporal analysis of gait changes in body weight supported treadmill trained rats following cervical spinal cord injury.
    Neckel ND
    J Neuroeng Rehabil; 2017 Sep; 14(1):96. PubMed ID: 28903771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot applied stance loading increases hindlimb muscle mass and stepping kinetics in a rat model of spinal cord injury.
    Nessler JA; Moustafa-Bayoumi M; Soto D; Duhon JE; Schmitt R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4145-8. PubMed ID: 22255252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-Applied Resistance Augments the Effects of Body Weight-Supported Treadmill Training on Stepping and Synaptic Plasticity in a Rodent Model of Spinal Cord Injury.
    Hinahon E; Estrada C; Tong L; Won DS; de Leon RD
    Neurorehabil Neural Repair; 2017 Aug; 31(8):746-757. PubMed ID: 28741434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.
    d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N
    J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot application of elastic fields to the pelvis of the spinal transected rat: a tool for detailed assessment and rehabilitation.
    Udoekwere UI; Ramakrishnan A; Mbi L; Giszter SF
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3684-7. PubMed ID: 17947050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Interactive Exoskeletal Robot for Overground Locomotion Studies in Rats.
    Song YS; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):591-9. PubMed ID: 25675461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of hindlimbs locomotion kinematics in spinalized rats treated with Tamoxifen plus treadmill exercise.
    Osuna-Carrasco LP; López-Ruiz JR; Mendizabal-Ruiz EG; De la Torre-Valdovinos B; Bañuelos-Pineda J; Jiménez-Estrada I; Dueñas-Jiménez SH
    Neuroscience; 2016 Oct; 333():151-61. PubMed ID: 27450566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic modelling of a robotic gait device for early rehabilitation of walking.
    Fang J; Gollee H; Galen S; Allan DB; Conway BA; Vuckovic A
    Proc Inst Mech Eng H; 2011 Dec; 225(12):1177-87. PubMed ID: 22320057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training.
    Cha J; Heng C; Reinkensmeyer DJ; Roy RR; Edgerton VR; De Leon RD
    J Neurotrauma; 2007 Jun; 24(6):1000-12. PubMed ID: 17600516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robotic Platform for 3D Forelimb Rehabilitation with Rats.
    Erwin A; Gallegos C; Cao Q; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():429-434. PubMed ID: 31374667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals.
    Minassian K; Hofstoetter US; Danner SM; Mayr W; Bruce JA; McKay WB; Tansey KE
    Neurorehabil Neural Repair; 2016 Mar; 30(3):233-43. PubMed ID: 26089308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of orthotic gait training with powered hip orthosis on walking in paraplegic patients.
    Arazpour M; Bani MA; Hutchins SW; Curran S; Javanshir MA; Mousavi ME
    Disabil Rehabil Assist Technol; 2014 May; 9(3):226-30. PubMed ID: 24749556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.