These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24269175)

  • 21. Robotic gait analysis of bipedal treadmill stepping by spinal contused rats: characterization of intrinsic recovery and comparison with BBB.
    Nessler JA; De Leon RD; Sharp K; Kwak E; Minakata K; Reinkensmeyer DJ
    J Neurotrauma; 2006 Jun; 23(6):882-96. PubMed ID: 16774473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A robotic device for studying rodent locomotion after spinal cord injury.
    Nessler JA; Timoszyk W; Merlo M; Emken JL; Minakata K; Roy RR; de Leon RD; Edgerton VR; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):497-506. PubMed ID: 16425832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic feet distance: A new functional assessment during treadmill locomotion in normal and thoracic spinal cord injured rats.
    Diogo CC; Costa LMD; Pereira JE; Filipe V; Couto PA; Magalhães LG; Geuna S; Armada-da-Silva PA; Maurício AC; Varejão AS
    Behav Brain Res; 2017 Sep; 335():132-135. PubMed ID: 28803852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A rodent brain-machine interface paradigm to study the impact of paraplegia on BMI performance.
    Bridges NR; Meyers M; Garcia J; Shewokis PA; Moxon KA
    J Neurosci Methods; 2018 Aug; 306():103-114. PubMed ID: 29859878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats.
    Gad P; Choe J; Nandra MS; Zhong H; Roy RR; Tai YC; Edgerton VR
    J Neuroeng Rehabil; 2013 Jan; 10():2. PubMed ID: 23336733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats.
    Gad P; Woodbridge J; Lavrov I; Zhong H; Roy RR; Sarrafzadeh M; Edgerton VR
    J Neuroeng Rehabil; 2012 Jun; 9():38. PubMed ID: 22691460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robotic loading during treadmill training enhances locomotor recovery in rats spinally transected as neonates.
    See PA; de Leon RD
    J Neurophysiol; 2013 Aug; 110(3):760-7. PubMed ID: 23678012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: A systematic review.
    Hayes SC; James Wilcox CR; Forbes White HS; Vanicek N
    J Spinal Cord Med; 2018 Sep; 41(5):529-543. PubMed ID: 29400988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Skilled hindlimb reaching task in rats as a platform for a brain-machine interface to restore motor function after complete spinal cord injury.
    Knudsen EB; Moxon KA; Sturgis EB; Shumsky JS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6315-8. PubMed ID: 22255782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.
    Alam M; Chen X; Zhang Z; Li Y; He J
    PLoS One; 2014; 9(8):e103764. PubMed ID: 25084446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robot-assisted hindlimb extension increases the probability of swing initiation during treadmill walking by spinal cord contused rats.
    Nessler JA; Minakata K; Sharp K; Reinkensmeyer DJ
    J Neurosci Methods; 2007 Jan; 159(1):66-77. PubMed ID: 16895737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locomotor adaptation to resistance during treadmill training transfers to overground walking in human SCI.
    Yen SC; Schmit BD; Landry JM; Roth H; Wu M
    Exp Brain Res; 2012 Feb; 216(3):473-82. PubMed ID: 22108702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hindlimb immobilization in a wheelchair alters functional recovery following contusive spinal cord injury in the adult rat.
    Caudle KL; Brown EH; Shum-Siu A; Burke DA; Magnuson TS; Voor MJ; Magnuson DS
    Neurorehabil Neural Repair; 2011 Oct; 25(8):729-39. PubMed ID: 21697451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of swimming on functional recovery after incomplete spinal cord injury in rats.
    Smith RR; Shum-Siu A; Baltzley R; Bunger M; Baldini A; Burke DA; Magnuson DS
    J Neurotrauma; 2006 Jun; 23(6):908-19. PubMed ID: 16774475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The physiological basis of neurorehabilitation--locomotor training after spinal cord injury.
    Hubli M; Dietz V
    J Neuroeng Rehabil; 2013 Jan; 10():5. PubMed ID: 23336934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vagus Nerve Stimulation Paired With Rehabilitative Training Enhances Motor Recovery After Bilateral Spinal Cord Injury to Cervical Forelimb Motor Pools.
    Darrow MJ; Torres M; Sosa MJ; Danaphongse TT; Haider Z; Rennaker RL; Kilgard MP; Hays SA
    Neurorehabil Neural Repair; 2020 Mar; 34(3):200-209. PubMed ID: 31969052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Swimming as a model of task-specific locomotor retraining after spinal cord injury in the rat.
    Magnuson DS; Smith RR; Brown EH; Enzmann G; Angeli C; Quesada PM; Burke D
    Neurorehabil Neural Repair; 2009; 23(6):535-45. PubMed ID: 19270266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients.
    Donati AR; Shokur S; Morya E; Campos DS; Moioli RC; Gitti CM; Augusto PB; Tripodi S; Pires CG; Pereira GA; Brasil FL; Gallo S; Lin AA; Takigami AK; Aratanha MA; Joshi S; Bleuler H; Cheng G; Rudolph A; Nicolelis MA
    Sci Rep; 2016 Aug; 6():30383. PubMed ID: 27513629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation to a cortex-controlled robot attached at the pelvis and engaged during locomotion in rats.
    Song W; Giszter SF
    J Neurosci; 2011 Feb; 31(8):3110-28. PubMed ID: 21414932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders.
    Dominici N; Keller U; Vallery H; Friedli L; van den Brand R; Starkey ML; Musienko P; Riener R; Courtine G
    Nat Med; 2012 Jul; 18(7):1142-7. PubMed ID: 22653117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.