BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 24269534)

  • 1. TGF-β-Smad2 dependent activation of CDC 25A plays an important role in cell proliferation through NFAT activation in metastatic breast cancer cells.
    Sengupta S; Jana S; Bhattacharyya A
    Cell Signal; 2014 Feb; 26(2):240-52. PubMed ID: 24269534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming growth factor-β 1 enhances the invasiveness of breast cancer cells by inducing a Smad2-dependent epithelial-to-mesenchymal transition.
    Lv ZD; Kong B; Li JG; Qu HL; Wang XG; Cao WH; Liu XY; Wang Y; Yang ZC; Xu HM; Wang HB
    Oncol Rep; 2013 Jan; 29(1):219-25. PubMed ID: 23129177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attenuation of Smad2 activity shows resistance to TGF-β signalling in mammary adenocarcinoma (MCF-7) cells.
    Sengupta S; Kundu S; Bhattacharyya A
    Cell Biol Int; 2013 May; 37(5):449-57. PubMed ID: 23494890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative involvement of NFAT and SnoN mediates transforming growth factor-β (TGF-β) induced EMT in metastatic breast cancer (MDA-MB 231) cells.
    Sengupta S; Jana S; Biswas S; Mandal PK; Bhattacharyya A
    Clin Exp Metastasis; 2013 Dec; 30(8):1019-31. PubMed ID: 23832742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EGCG inhibits transforming growth factor-β-mediated epithelial-to-mesenchymal transition via the inhibition of Smad2 and Erk1/2 signaling pathways in nonsmall cell lung cancer cells.
    Liu LC; Tsao TC; Hsu SR; Wang HC; Tsai TC; Kao JY; Way TD
    J Agric Food Chem; 2012 Oct; 60(39):9863-73. PubMed ID: 22957988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Procyanidin C1 from Cinnamomi Cortex inhibits TGF-β-induced epithelial-to-mesenchymal transition in the A549 lung cancer cell line.
    Kin R; Kato S; Kaneto N; Sakurai H; Hayakawa Y; Li F; Tanaka K; Saiki I; Yokoyama S
    Int J Oncol; 2013 Dec; 43(6):1901-6. PubMed ID: 24141365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA-486-5p suppresses TGF-β2-induced proliferation, invasion and epithelial-mesenchymal transition of lens epithelial cells by targeting Smad2.
    Liu B; Sun J; Lei X; Zhu Z; Pei C; Qin L
    J Biosci; 2017 Dec; 42(4):575-584. PubMed ID: 29229876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-190 suppresses breast cancer metastasis by regulation of TGF-β-induced epithelial-mesenchymal transition.
    Yu Y; Luo W; Yang ZJ; Chi JR; Li YR; Ding Y; Ge J; Wang X; Cao XC
    Mol Cancer; 2018 Mar; 17(1):70. PubMed ID: 29510731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming growth factor-β and epithelial-mesenchymal transition are associated with pulmonary metastasis in adenoid cystic carcinoma.
    Dong L; Ge XY; Wang YX; Yang LQ; Li SL; Yu GY; Gao Y; Fu J
    Oral Oncol; 2013 Nov; 49(11):1051-8. PubMed ID: 23962790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EGF induces epithelial-mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells.
    Kim J; Kong J; Chang H; Kim H; Kim A
    Oncotarget; 2016 Dec; 7(51):85021-85032. PubMed ID: 27829223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct inhibition of the transforming growth factor-β pathway by protein-bound polysaccharide through inactivation of Smad2 signaling.
    Ono Y; Hayashida T; Konagai A; Okazaki H; Miyao K; Kawachi S; Tanabe M; Shinoda M; Jinno H; Hasegawa H; Kitajima M; Kitagawa Y
    Cancer Sci; 2012 Feb; 103(2):317-24. PubMed ID: 22034928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An novel inhibitor of TGF-β type I receptor, IN-1130, blocks breast cancer lung metastasis through inhibition of epithelial-mesenchymal transition.
    Park CY; Min KN; Son JY; Park SY; Nam JS; Kim DK; Sheen YY
    Cancer Lett; 2014 Aug; 351(1):72-80. PubMed ID: 24887560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis.
    Imamura T; Hikita A; Inoue Y
    Breast Cancer; 2012 Apr; 19(2):118-24. PubMed ID: 22139728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HSP70 decreases receptor-dependent phosphorylation of Smad2 and blocks TGF-β-induced epithelial-mesenchymal transition.
    Li Y; Kang X; Wang Q
    J Genet Genomics; 2011 Mar; 38(3):111-6. PubMed ID: 21477782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMPK Inhibits the Stimulatory Effects of TGF-β on Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition.
    Lin H; Li N; He H; Ying Y; Sunkara S; Luo L; Lv N; Huang D; Luo Z
    Mol Pharmacol; 2015 Dec; 88(6):1062-71. PubMed ID: 26424816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential roles of Src in transforming growth factor-ß regulation of growth arrest, epithelial-to-mesenchymal transition and cell migration in pancreatic ductal adenocarcinoma cells.
    Ungefroren H; Sebens S; Groth S; Gieseler F; Fändrich F
    Int J Oncol; 2011 Mar; 38(3):797-805. PubMed ID: 21225226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EW-7203, a novel small molecule inhibitor of transforming growth factor-β (TGF-β) type I receptor/activin receptor-like kinase-5, blocks TGF-β1-mediated epithelial-to-mesenchymal transition in mammary epithelial cells.
    Park CY; Kim DK; Sheen YY
    Cancer Sci; 2011 Oct; 102(10):1889-96. PubMed ID: 21707864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor suppressor SCUBE2 inhibits breast-cancer cell migration and invasion through the reversal of epithelial-mesenchymal transition.
    Lin YC; Lee YC; Li LH; Cheng CJ; Yang RB
    J Cell Sci; 2014 Jan; 127(Pt 1):85-100. PubMed ID: 24213532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LPS-induced epithelial-mesenchymal transition of intrahepatic biliary epithelial cells.
    Zhao L; Yang R; Cheng L; Wang M; Jiang Y; Wang S
    J Surg Res; 2011 Dec; 171(2):819-25. PubMed ID: 20691985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FGF18 Enhances Migration and the Epithelial-Mesenchymal Transition in Breast Cancer by Regulating Akt/GSK3β/Β-Catenin Signaling.
    Song N; Zhong J; Hu Q; Gu T; Yang B; Zhang J; Yu J; Ma X; Chen Q; Qi J; Liu Y; Su W; Feng Z; Wang X; Wang H
    Cell Physiol Biochem; 2018; 49(3):1019-1032. PubMed ID: 30196303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.