These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 24269827)
61. Hydrolysis of microcrystalline cellulose using functionalized Bronsted acidic ionic liquids - A comparative study. Parveen F; Patra T; Upadhyayula S Carbohydr Polym; 2016 Jan; 135():280-4. PubMed ID: 26453879 [TBL] [Abstract][Full Text] [Related]
62. Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 degrees C: an NMR study. Amarasekara AS; Williams LD; Ebede CC Carbohydr Res; 2008 Dec; 343(18):3021-4. PubMed ID: 18828997 [TBL] [Abstract][Full Text] [Related]
63. Synergistic effect of modified activated carbon and ionic liquid in the conversion of microcrystalline cellulose to 5-Hydroxymethyl Furfural. Tyagi U; Anand N; Kumar D Bioresour Technol; 2018 Nov; 267():326-332. PubMed ID: 30029178 [TBL] [Abstract][Full Text] [Related]
64. Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis. Yu IKM; Tsang DCW; Yip ACK; Chen SS; Ok YS; Poon CS Chemosphere; 2017 Oct; 184():1099-1107. PubMed ID: 28672690 [TBL] [Abstract][Full Text] [Related]
65. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst. Yang F; Liu Q; Bai X; Du Y Bioresour Technol; 2011 Feb; 102(3):3424-9. PubMed ID: 21036606 [TBL] [Abstract][Full Text] [Related]
66. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst. Zhang L; Yu H; Wang P; Li Y Bioresour Technol; 2014 Jan; 151():355-60. PubMed ID: 24262845 [TBL] [Abstract][Full Text] [Related]
67. Origin of 5-hydroxymethylfurfural stability in water/dimethyl sulfoxide mixtures. Tsilomelekis G; Josephson TR; Nikolakis V; Caratzoulas S ChemSusChem; 2014 Jan; 7(1):117-26. PubMed ID: 24408726 [TBL] [Abstract][Full Text] [Related]
68. The first molecular level monitoring of carbohydrate conversion to 5-hydroxymethylfurfural in ionic liquids. B2O3--an efficient dual-function metal-free promoter for environmentally benign applications. Khokhlova EA; Kachala VV; Ananikov VP ChemSusChem; 2012 Apr; 5(4):783-9. PubMed ID: 22359390 [TBL] [Abstract][Full Text] [Related]
69. SO₃H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose. Liu Y; Xiao W; Xia S; Ma P Carbohydr Polym; 2013 Jan; 92(1):218-22. PubMed ID: 23218286 [TBL] [Abstract][Full Text] [Related]
70. Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid. Zhang L; Yu H; Wang P Bioresour Technol; 2013 May; 136():515-21. PubMed ID: 23567725 [TBL] [Abstract][Full Text] [Related]
71. Conversion of xylose into furfural using lignosulfonic acid as catalyst in ionic liquid. Wu C; Chen W; Zhong L; Peng X; Sun R; Fang J; Zheng S J Agric Food Chem; 2014 Jul; 62(30):7430-5. PubMed ID: 25007384 [TBL] [Abstract][Full Text] [Related]
72. Conversion of glucose into furans in the presence of AlCl3 in an ethanol-water solvent system. Yang Y; Hu C; Abu-Omar MM Bioresour Technol; 2012 Jul; 116():190-4. PubMed ID: 22609675 [TBL] [Abstract][Full Text] [Related]
73. Theoretical Elucidation of Glucose Dehydration to 5-Hydroxymethylfurfural Catalyzed by a SO3H-Functionalized Ionic Liquid. Li J; Li J; Zhang D; Liu C J Phys Chem B; 2015 Oct; 119(42):13398-406. PubMed ID: 26434955 [TBL] [Abstract][Full Text] [Related]
74. Coupling of nanoporous chromium, aluminium-containing silicates with an ionic liquid for the transformation of glucose into 5-(hydroxymethyl)-2-furaldehyde. Antunes MM; Lima S; Pillinger M; Valente AA Molecules; 2012 Mar; 17(4):3690-707. PubMed ID: 22450680 [TBL] [Abstract][Full Text] [Related]
75. Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Kim SJ; Dwiatmoko AA; Choi JW; Suh YW; Suh DJ; Oh M Bioresour Technol; 2010 Nov; 101(21):8273-9. PubMed ID: 20594834 [TBL] [Abstract][Full Text] [Related]
76. Conversion of fructose, glucose, and cellulose to 5-hydroxymethylfurfural by alkaline earth phosphate catalysts in hot compressed water. Daorattanachai P; Khemthong P; Viriya-Empikul N; Laosiripojana N; Faungnawakij K Carbohydr Res; 2012 Dec; 363():58-61. PubMed ID: 23123573 [TBL] [Abstract][Full Text] [Related]
77. Improved in situ saccharification of cellulose pretreated by dimethyl sulfoxide/ionic liquid using cellulase from a newly isolated Paenibacillus sp. LLZ1. Hu D; Ju X; Li L; Hu C; Yan L; Wu T; Fu J; Qin M Bioresour Technol; 2016 Feb; 201():8-14. PubMed ID: 26618784 [TBL] [Abstract][Full Text] [Related]
78. Cellulose Dissolution in Mixtures of Ionic Liquids and Dimethyl Sulfoxide: A Quantitative Assessment of the Relative Importance of Temperature and Composition of the Binary Solvent. Dignani MT; Bioni TA; Paixão TRLC; El Seoud OA Molecules; 2020 Dec; 25(24):. PubMed ID: 33348539 [TBL] [Abstract][Full Text] [Related]
79. Advances of Ionic Liquids and Deep Eutectic Solvents in Green Processes of Biomass-Derived 5-Hydroxymethylfurfural. Chen L; Xiong Y; Qin H; Qi Z ChemSusChem; 2022 Jul; 15(13):e202102635. PubMed ID: 35088547 [TBL] [Abstract][Full Text] [Related]
80. Ionic liquids as solvents for dissolution of corn starch and homogeneous synthesis of fatty-acid starch esters without catalysts. Gao J; Luo ZG; Luo FX Carbohydr Polym; 2012 Aug; 89(4):1215-21. PubMed ID: 24750934 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]