These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 24269827)
101. The effect of imidazolium ionic liquid on the dehydration of fructose to 5-hydroxymethylfurfural, and a room temperature catalytic system. Lai L; Zhang Y ChemSusChem; 2010 Nov; 3(11):1257-9. PubMed ID: 20812317 [No Abstract] [Full Text] [Related]
102. Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural. Zhang Y; Degirmenci V; Li C; Hensen EJ ChemSusChem; 2011 Jan; 4(1):59-64. PubMed ID: 21226212 [TBL] [Abstract][Full Text] [Related]
103. Dehydration of fructose to 5-hydroxymethylfurfural by rare earth metal trifluoromethanesulfonates in organic solvents. Wang F; Shi AW; Qin XX; Liu CL; Dong WS Carbohydr Res; 2011 May; 346(7):982-5. PubMed ID: 21453907 [TBL] [Abstract][Full Text] [Related]
104. Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide. Wang L; Gao L; Cheng B; Ji X; Song J; Lu F Carbohydr Polym; 2014 Sep; 110():292-7. PubMed ID: 24906758 [TBL] [Abstract][Full Text] [Related]
105. "One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids" [Bioresour. Technol. 102 (11) (2011)]. Guo F; Fang Z; Tian XF; Long YD; Jiang LQ Bioresour Technol; 2013 Jul; 140():447-50. PubMed ID: 23908993 [TBL] [Abstract][Full Text] [Related]
106. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts. Bohre A; Saha B; Abu-Omar MM ChemSusChem; 2015 Dec; 8(23):4022-9. PubMed ID: 26549016 [TBL] [Abstract][Full Text] [Related]
107. Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: experiment and simulation. Xiong R; León M; Nikolakis V; Sandler SI; Vlachos DG ChemSusChem; 2014 Jan; 7(1):236-44. PubMed ID: 24106213 [TBL] [Abstract][Full Text] [Related]
108. Copper-zinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural. Bottari G; Kumalaputri AJ; Krawczyk KK; Feringa BL; Heeres HJ; Barta K ChemSusChem; 2015 Apr; 8(8):1323-7. PubMed ID: 25833148 [TBL] [Abstract][Full Text] [Related]
109. Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Ståhlberg T; Rodriguez-Rodriguez S; Fristrup P; Riisager A Chemistry; 2011 Feb; 17(5):1456-64. PubMed ID: 21268148 [TBL] [Abstract][Full Text] [Related]
110. Improved Production of 5-Hydroxymethylfurfural in Acidic Deep Eutectic Solvents Using Microwave-Assisted Reactions. Morais ES; Freire MG; Freire CSR; Silvestre AJD Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216072 [TBL] [Abstract][Full Text] [Related]
111. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC. Sun Y; Liu P; Liu Z Carbohydr Polym; 2016 May; 142():177-82. PubMed ID: 26917388 [TBL] [Abstract][Full Text] [Related]
112. Effect of ionic liquid treatment on the ultrastructural and topochemical features of compression wood in Japanese cedar (Cryptomeria japonica). Kanbayashi T; Miyafuji H Sci Rep; 2016 Jul; 6():30147. PubMed ID: 27426470 [TBL] [Abstract][Full Text] [Related]
113. Selective catalytic production of 5-hydroxymethylfurfural from glucose by adjusting catalyst wettability. Wang L; Wang H; Liu F; Zheng A; Zhang J; Sun Q; Lewis JP; Zhu L; Meng X; Xiao FS ChemSusChem; 2014 Feb; 7(2):402-6. PubMed ID: 24399510 [TBL] [Abstract][Full Text] [Related]
114. Conversion of fructose into 5-hydroxymethylfurfural (HMF) and its derivatives promoted by inorganic salt in alcohol. Liu J; Tang Y; Wu K; Bi C; Cui Q Carbohydr Res; 2012 Mar; 350():20-4. PubMed ID: 22264628 [TBL] [Abstract][Full Text] [Related]
115. Governing chemistry of cellulose hydrolysis in supercritical water. Cantero DA; Bermejo MD; Cocero MJ ChemSusChem; 2015 Mar; 8(6):1026-33. PubMed ID: 25704124 [TBL] [Abstract][Full Text] [Related]
116. Insight into Biomass Upgrade: A Review on Hydrogenation of 5-Hydroxymethylfurfural (HMF) to 2,5-Dimethylfuran (DMF). Endot NA; Junid R; Jamil MSS Molecules; 2021 Nov; 26(22):. PubMed ID: 34833940 [TBL] [Abstract][Full Text] [Related]
117. Highly effective synthesis of 5-hydroxymethylfurfural from lignocellulosic biomass over a green and one-pot reaction in biphasic system. Huynh QT; Zhong CT; Huang Q; Lin YC; Chen KF; Liao CS; Dong CD; Chang KL Bioresour Technol; 2023 Nov; 387():129590. PubMed ID: 37532059 [TBL] [Abstract][Full Text] [Related]
118. Pretreatment of sugarcane bagasse by acid-catalysed process in aqueous ionic liquid solutions. Zhang Z; O'Hara IM; Doherty WO Bioresour Technol; 2012 Sep; 120():149-56. PubMed ID: 22789826 [TBL] [Abstract][Full Text] [Related]
119. Selective conversion of cotton cellulose to glucose and 5-hydroxymethyl furfural with SO4(2-)/MxOy solid superacid catalyst. Yang F; Li Y; Zhang Q; Sun X; Fan H; Xu N; Li G Carbohydr Polym; 2015 Oct; 131():9-14. PubMed ID: 26256154 [TBL] [Abstract][Full Text] [Related]
120. Enzyme-catalyzed hydrolysis of cellulose in ionic liquids: a green approach toward the production of biofuels. Bose S; Armstrong DW; Petrich JW J Phys Chem B; 2010 Jun; 114(24):8221-7. PubMed ID: 20509703 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]