These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24269942)

  • 1. Target capture during Mos1 transposition.
    Pflieger A; Jaillet J; Petit A; Augé-Gouillou C; Renault S
    J Biol Chem; 2014 Jan; 289(1):100-11. PubMed ID: 24269942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics.
    Tosi LR; Beverley SM
    Nucleic Acids Res; 2000 Feb; 28(3):784-90. PubMed ID: 10637331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of mariner transposition: the peculiar case of Mos1.
    Jaillet J; Genty M; Cambefort J; Rouault JD; Augé-Gouillou C
    PLoS One; 2012; 7(8):e43365. PubMed ID: 22905263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Basis for the Inverted Repeat Preferences of mariner Transposases.
    Trubitsyna M; Grey H; Houston DR; Finnegan DJ; Richardson JM
    J Biol Chem; 2015 May; 290(21):13531-40. PubMed ID: 25869132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of the mariner Mos1 synaptic complex.
    Augé-Gouillou C; Brillet B; Hamelin MH; Bigot Y
    Mol Cell Biol; 2005 Apr; 25(7):2861-70. PubMed ID: 15767689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution conformations of early intermediates in Mos1 transposition.
    Cuypers MG; Trubitsyna M; Callow P; Forsyth VT; Richardson JM
    Nucleic Acids Res; 2013 Feb; 41(3):2020-33. PubMed ID: 23262225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-binding activity and subunit interaction of the mariner transposase.
    Zhang L; Dawson A; Finnegan DJ
    Nucleic Acids Res; 2001 Sep; 29(17):3566-75. PubMed ID: 11522826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposase-transposase interactions in MOS1 complexes: a biochemical approach.
    Carpentier G; Jaillet J; Pflieger A; Adet J; Renault S; Augé-Gouillou C
    J Mol Biol; 2011 Jan; 405(4):892-908. PubMed ID: 21110982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural role of the flanking DNA in mariner transposon excision.
    Dornan J; Grey H; Richardson JM
    Nucleic Acids Res; 2015 Feb; 43(4):2424-32. PubMed ID: 25662605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote.
    Richardson JM; Colloms SD; Finnegan DJ; Walkinshaw MD
    Cell; 2009 Sep; 138(6):1096-108. PubMed ID: 19766564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of the interaction of Mos1 transposase with its inverted terminal repeats reveals new insight into the protein-DNA complex assembly.
    Esnault C; Jaillet J; Delorme N; Bouchet N; Renault S; Douziech-Eyrolles L; Pilard JF; Augé-Gouillou C
    Chembiochem; 2015 Jan; 16(1):140-8. PubMed ID: 25487538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bend, flip and trap mechanism for transposon integration.
    Morris ER; Grey H; McKenzie G; Jones AC; Richardson JM
    Elife; 2016 May; 5():. PubMed ID: 27223327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutant Mos1 mariner transposons are hyperactive in Aedes aegypti.
    Pledger DW; Coates CJ
    Insect Biochem Mol Biol; 2005 Oct; 35(10):1199-207. PubMed ID: 16102425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains.
    Brillet B; Bigot Y; Augé-Gouillou C
    Genetica; 2007 Jun; 130(2):105-20. PubMed ID: 16912840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target site selection by the mariner-like element, Mos1.
    Crénès G; Moundras C; Demattei MV; Bigot Y; Petit A; Renault S
    Genetica; 2010 May; 138(5):509-17. PubMed ID: 19629719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition.
    Butler MG; Chakraborty SA; Lampe DJ
    Genetica; 2006 May; 127(1-3):351-66. PubMed ID: 16850239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical properties of DNA components affecting the transposition efficiency of the mariner Mos1 element.
    Casteret S; Chbab N; Cambefort J; Augé-Gouillou C; Bigot Y; Rouleux-Bonnin F
    Mol Genet Genomics; 2009 Nov; 282(5):531-46. PubMed ID: 19774400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bacterial Tn9 chloramphenicol resistance gene: an attractive DNA segment for Mos1 mariner insertions.
    Crénès G; Ivo D; Hérisson J; Dion S; Renault S; Bigot Y; Petit A
    Mol Genet Genomics; 2009 Mar; 281(3):315-28. PubMed ID: 19112581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cAMP protein kinase phosphorylates the Mos1 transposase and regulates its activity: evidences from mass spectrometry and biochemical analyses.
    Bouchet N; Jaillet J; Gabant G; Brillet B; Briseño-Roa L; Cadene M; Augé-Gouillou C
    Nucleic Acids Res; 2014 Jan; 42(2):1117-28. PubMed ID: 24081583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperactive mariner transposons are created by mutations that disrupt allosterism and increase the rate of transposon end synapsis.
    Liu D; Chalmers R
    Nucleic Acids Res; 2014 Feb; 42(4):2637-45. PubMed ID: 24319144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.