BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24269943)

  • 1. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional Zener constitutive model.
    Bentil SA; Dupaix RB
    J Mech Behav Biomed Mater; 2014 Feb; 30():83-90. PubMed ID: 24269943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of saline solution absorption and compressive rate on the material properties of brain tissue.
    McCarty AK; Zhang L; Hansen S; Jackson WJ; Bentil SA
    J Mech Behav Biomed Mater; 2019 Sep; 97():355-364. PubMed ID: 31154155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic properties of shock wave exposed brain tissue subjected to unconfined compression experiments.
    McCarty AK; Zhang L; Hansen S; Jackson WJ; Bentil SA
    J Mech Behav Biomed Mater; 2019 Dec; 100():103380. PubMed ID: 31446342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The constitutive properties of the brain paraenchyma Part 2. Fractional derivative approach.
    Davis GB; Kohandel M; Sivaloganathan S; Tenti G
    Med Eng Phys; 2006 Jun; 28(5):455-9. PubMed ID: 16256405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency dependence of complex moduli of brain tissue using a fractional Zener model.
    Kohandel M; Sivaloganathan S; Tenti G; Darvish K
    Phys Med Biol; 2005 Jun; 50(12):2799-805. PubMed ID: 15930603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of brain tissue in tension at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2014 May; 33():43-54. PubMed ID: 23127641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.
    Van Loocke M; Lyons CG; Simms CK
    J Biomech; 2008; 41(7):1555-66. PubMed ID: 18396290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.
    Nicolle S; Vezin P; Palierne JF
    J Biomech; 2010 Mar; 43(5):927-32. PubMed ID: 19954778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of brain tissue in tension.
    Miller K; Chinzei K
    J Biomech; 2002 Apr; 35(4):483-90. PubMed ID: 11934417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive model for brain tissue under finite compression.
    Laksari K; Shafieian M; Darvish K
    J Biomech; 2012 Feb; 45(4):642-6. PubMed ID: 22281404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying a minimal rheological configuration: a tool for effective and efficient constitutive modeling of soft tissues.
    Jordan P; Kerdok AE; Howe RD; Socrate S
    J Biomech Eng; 2011 Apr; 133(4):041006. PubMed ID: 21428680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis.
    Wu JZ; Dong RG; Smutz WP; Schopper AW
    Biomed Mater Eng; 2003; 13(4):373-85. PubMed ID: 14646052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the mechanical properties of liver fibrosis in rats.
    Zhu Y; Chen X; Zhang X; Chen S; Shen Y; Song L
    J Biomech; 2016 Jun; 49(9):1461-1467. PubMed ID: 27017300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical response of brain tissue under blast loading.
    Laksari K; Sadeghipour K; Darvish K
    J Mech Behav Biomed Mater; 2014 Apr; 32():132-144. PubMed ID: 24457112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional-order viscoelasticity in one-dimensional blood flow models.
    Perdikaris P; Karniadakis GE
    Ann Biomed Eng; 2014 May; 42(5):1012-23. PubMed ID: 24414838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fractional viscoelastic response of human breast tissue cells.
    Carmichael B; Babahosseini H; Mahmoodi SN; Agah M
    Phys Biol; 2015 May; 12(4):046001. PubMed ID: 26015429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A variational constitutive model for soft biological tissues.
    El Sayed T; Mota A; Fraternali F; Ortiz M
    J Biomech; 2008; 41(7):1458-66. PubMed ID: 18423649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.