These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 24270321)
1. Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697. Viborg AH; Katayama T; Abou Hachem M; Andersen MC; Nishimoto M; Clausen MH; Urashima T; Svensson B; Kitaoka M Glycobiology; 2014 Feb; 24(2):208-16. PubMed ID: 24270321 [TBL] [Abstract][Full Text] [Related]
2. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Yoshida E; Sakurama H; Kiyohara M; Nakajima M; Kitaoka M; Ashida H; Hirose J; Katayama T; Yamamoto K; Kumagai H Glycobiology; 2012 Mar; 22(3):361-8. PubMed ID: 21926104 [TBL] [Abstract][Full Text] [Related]
3. A β1-6/β1-3 galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 gives insight into sub-specificities of β-galactoside catabolism within Bifidobacterium. Viborg AH; Fredslund F; Katayama T; Nielsen SK; Svensson B; Kitaoka M; Lo Leggio L; Abou Hachem M Mol Microbiol; 2014 Oct; ():. PubMed ID: 25287704 [TBL] [Abstract][Full Text] [Related]
5. Discovery of α-l-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42. Viborg AH; Katayama T; Arakawa T; Abou Hachem M; Lo Leggio L; Kitaoka M; Svensson B; Fushinobu S J Biol Chem; 2017 Dec; 292(51):21092-21101. PubMed ID: 29061847 [TBL] [Abstract][Full Text] [Related]
6. Bifidobacterium longum subsp. longum Exo-β-1,3-Galactanase, an enzyme for the degradation of type II arabinogalactan. Fujita K; Sakaguchi T; Sakamoto A; Shimokawa M; Kitahara K Appl Environ Microbiol; 2014 Aug; 80(15):4577-84. PubMed ID: 24837371 [TBL] [Abstract][Full Text] [Related]
7. Two Novel α-l-Arabinofuranosidases from Komeno M; Hayamizu H; Fujita K; Ashida H Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635377 [TBL] [Abstract][Full Text] [Related]
8. Substrate recognition mode of a glycoside hydrolase family 42 β-galactosidase from Gotoh A; Hidaka M; Sakurama H; Nishimoto M; Kitaoka M; Sakanaka M; Fushinobu S; Katayama T Microbiome Res Rep; 2023; 2(3):20. PubMed ID: 38046823 [No Abstract] [Full Text] [Related]
9. Substrate preference of an ABC importer corresponds to selective growth on β-(1,6)-galactosides in Theilmann MC; Fredslund F; Svensson B; Lo Leggio L; Abou Hachem M J Biol Chem; 2019 Aug; 294(31):11701-11711. PubMed ID: 31186348 [TBL] [Abstract][Full Text] [Related]
10. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. Sakurama H; Kiyohara M; Wada J; Honda Y; Yamaguchi M; Fukiya S; Yokota A; Ashida H; Kumagai H; Kitaoka M; Yamamoto K; Katayama T J Biol Chem; 2013 Aug; 288(35):25194-25206. PubMed ID: 23843461 [TBL] [Abstract][Full Text] [Related]
11. Intra- and extracellular beta-galactosidases from Bifidobacterium bifidum and B. infantis: molecular cloning, heterologous expression, and comparative characterization. Møller PL; Jørgensen F; Hansen OC; Madsen SM; Stougaard P Appl Environ Microbiol; 2001 May; 67(5):2276-83. PubMed ID: 11319112 [TBL] [Abstract][Full Text] [Related]
12. Prebiotic properties of Bacillus coagulans MA-13: production of galactoside hydrolyzing enzymes and characterization of the transglycosylation properties of a GH42 β-galactosidase. Aulitto M; Strazzulli A; Sansone F; Cozzolino F; Monti M; Moracci M; Fiorentino G; Limauro D; Bartolucci S; Contursi P Microb Cell Fact; 2021 Mar; 20(1):71. PubMed ID: 33736637 [TBL] [Abstract][Full Text] [Related]
13. Bifidobacterium longum endogalactanase liberates galactotriose from type I galactans. Hinz SW; Pastink MI; van den Broek LA; Vincken JP; Voragen AG Appl Environ Microbiol; 2005 Sep; 71(9):5501-10. PubMed ID: 16151143 [TBL] [Abstract][Full Text] [Related]
14. Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum. Fujita K; Sakamoto A; Kaneko S; Kotake T; Tsumuraya Y; Kitahara K Appl Microbiol Biotechnol; 2019 Feb; 103(3):1299-1310. PubMed ID: 30564851 [TBL] [Abstract][Full Text] [Related]
15. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. Bunesova V; Lacroix C; Schwab C BMC Microbiol; 2016 Oct; 16(1):248. PubMed ID: 27782805 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. Tabachnikov O; Shoham Y FEBS J; 2013 Feb; 280(3):950-64. PubMed ID: 23216604 [TBL] [Abstract][Full Text] [Related]
17. beta-galactosidase from Bifidobacterium adolescentis DSM20083 prefers beta(1,4)-galactosides over lactose. Hinz SW; van den Brock LA; Beldman G; Vincken JP; Voragen AG Appl Microbiol Biotechnol; 2004 Dec; 66(3):276-84. PubMed ID: 15480628 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of Cooperative Degradation of Gum Arabic Arabinogalactan Protein by Bifidobacterium longum Surface Enzymes. Sasaki Y; Komeno M; Ishiwata A; Horigome A; Odamaki T; Xiao JZ; Tanaka K; Ito Y; Kitahara K; Ashida H; Fujita K Appl Environ Microbiol; 2022 Mar; 88(6):e0218721. PubMed ID: 35108084 [TBL] [Abstract][Full Text] [Related]
19. Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. LoCascio RG; Desai P; Sela DA; Weimer B; Mills DA Appl Environ Microbiol; 2010 Nov; 76(22):7373-81. PubMed ID: 20802066 [TBL] [Abstract][Full Text] [Related]
20. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus. Solomon HV; Tabachnikov O; Lansky S; Salama R; Feinberg H; Shoham Y; Shoham G Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2433-48. PubMed ID: 26627651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]