These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 24270673)

  • 1. Photochemistry of a 1 : 1 hydrogen-bonded CH3CN : HCOOH complex under astrochemically-relevant conditions.
    Zins EL; Krim L
    Phys Chem Chem Phys; 2014 Feb; 16(8):3388-98. PubMed ID: 24270673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas-Phase vs. Grain-Surface Formation of Interstellar Complex Organic Molecules: A Comprehensive Quantum-Chemical Study.
    Martínez-Bachs B; Rimola A
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three milieux for interstellar chemistry: gas, dust, and ice.
    Herbst E
    Phys Chem Chem Phys; 2014 Feb; 16(8):3344-59. PubMed ID: 24220255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of hexamethylenetetramine (HMT) formation in the solid state at low temperature.
    Vinogradoff V; Rimola A; Duvernay F; Danger G; Theulé P; Chiavassa T
    Phys Chem Chem Phys; 2012 Sep; 14(35):12309-20. PubMed ID: 22850541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. I. The submonolayer regime on interstellar relevant substrates.
    Congiu E; Chaabouni H; Laffon C; Parent P; Baouche S; Dulieu F
    J Chem Phys; 2012 Aug; 137(5):054713. PubMed ID: 22894377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid state chemistry of nitrogen oxides--part II: surface consumption of NO2.
    Ioppolo S; Fedoseev G; Minissale M; Congiu E; Dulieu F; Linnartz H
    Phys Chem Chem Phys; 2014 May; 16(18):8270-82. PubMed ID: 24671439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. II. The multilayer regime in interstellar relevant ices.
    Fedoseev G; Ioppolo S; Lamberts T; Zhen JF; Cuppen HM; Linnartz H
    J Chem Phys; 2012 Aug; 137(5):054714. PubMed ID: 22894378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the morphology of interstellar ice analogues after hydrogen atom exposure.
    Accolla M; Congiu E; Dulieu F; Manicò G; Chaabouni H; Matar E; Mokrane H; Lemaire JL; Pirronello V
    Phys Chem Chem Phys; 2011 May; 13(17):8037-45. PubMed ID: 21445409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precursors of biological cofactors from ultraviolet irradiation of circumstellar/interstellar ice analogues.
    Meierhenrich UJ; Muñoz Caro GM; Schutte WA; Thiemann WH; Barbier B; Brack A
    Chemistry; 2005 Aug; 11(17):4895-900. PubMed ID: 15900538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure and dynamics of carbon dioxide and water containing ices investigated via THz and mid-IR spectroscopy.
    Allodi MA; Ioppolo S; Kelley MJ; McGuire BA; Blake GA
    Phys Chem Chem Phys; 2014 Feb; 16(8):3442-55. PubMed ID: 24394213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Chemical Cluster Studies of Cation-Ice Reactions for Astrochemical Applications: Seeking Experimental Confirmation.
    Woon DE
    Acc Chem Res; 2021 Feb; 54(3):490-497. PubMed ID: 33444014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid state chemistry of nitrogen oxides--part I: surface consumption of NO.
    Minissale M; Fedoseev G; Congiu E; Ioppolo S; Dulieu F; Linnartz H
    Phys Chem Chem Phys; 2014 May; 16(18):8257-69. PubMed ID: 24671412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distributions and interstellar reaction processes.
    Neill JL; Steber AL; Muckle MT; Zaleski DP; Lattanzi V; Spezzano S; McCarthy MC; Remijan AJ; Friedel DN; Widicus Weaver SL; Pate BH
    J Phys Chem A; 2011 Jun; 115(24):6472-80. PubMed ID: 21591798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of hydroxyacetonitrile (HOCH2CN) and polyoxymethylene (POM)-derivatives in comets from formaldehyde (CH2O) and hydrogen cyanide (HCN) activated by water.
    Danger G; Rimola A; Abou Mrad N; Duvernay F; Roussin G; Theule P; Chiavassa T
    Phys Chem Chem Phys; 2014 Feb; 16(8):3360-70. PubMed ID: 24202268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water formation through O2 + D pathway on cold silicate and amorphous water ice surfaces of interstellar interest.
    Chaabouni H; Minissale M; Manicò G; Congiu E; Noble JA; Baouche S; Accolla M; Lemaire JL; Pirronello V; Dulieu F
    J Chem Phys; 2012 Dec; 137(23):234706. PubMed ID: 23267497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient simulations of gas-grain chemistry in interstellar clouds.
    Lipshtat A; Biham O
    Phys Rev Lett; 2004 Oct; 93(17):170601. PubMed ID: 15525059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz.
    Johansson LE; Andersson C; Ellder J; Friberg P; Hjalmarson A; Hoglund B; Irvine WM; Olofsson H; Rydbeck G
    Astron Astrophys; 1984; 130():227-56. PubMed ID: 11541988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular complexes in close and far away.
    Klemperer W; Vaida V
    Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10584-8. PubMed ID: 16740667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexes and clusters of water relevant to atmospheric chemistry: H2O complexes with oxidants.
    Sennikov PG; Ignatov SK; Schrems O
    Chemphyschem; 2005 Mar; 6(3):392-412. PubMed ID: 15799459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase.
    Pilling S; Baptista L; Boechat-Roberty HM; Andrade DP
    Astrobiology; 2011 Nov; 11(9):883-93. PubMed ID: 22066498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.