These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 24270705)
1. Evidence for correlation between mutability of an unstable anthocyanin-governing locus and abundance of anthocyanin. Jeffries VE; Sastry GR Theor Appl Genet; 1982 Mar; 63(1):81-6. PubMed ID: 24270705 [TBL] [Abstract][Full Text] [Related]
2. Provocation of mutability in the level of mutation expressed at the pal-rec gene in Antirrhinum majus. Jeffries VE; Sastry GR Theor Appl Genet; 1981 Sep; 60(5):303-11. PubMed ID: 24276871 [TBL] [Abstract][Full Text] [Related]
3. Stable transcription activities dependent on an orientation of Tam3 transposon insertions into Antirrhinum and yeast promoters occur only within chromatin. Uchiyama T; Fujino K; Ogawa T; Wakatsuki A; Kishima Y; Mikami T; Sano Y Plant Physiol; 2009 Nov; 151(3):1557-69. PubMed ID: 19759347 [TBL] [Abstract][Full Text] [Related]
4. Genetic elements inducing gene changes at the pallida locus of Antirrhinum majus. Aslam KM Theor Appl Genet; 1990 Apr; 79(4):475-80. PubMed ID: 24226451 [TBL] [Abstract][Full Text] [Related]
5. The combination of R2R3-MYB gene AmRosea1 and hairy root culture is a useful tool for rapidly induction and production of anthocyanins in Antirrhinum majus L. Piao C; Wu J; Cui ML AMB Express; 2021 Sep; 11(1):128. PubMed ID: 34519881 [TBL] [Abstract][Full Text] [Related]
6. Germinal reversion of an unstable mutation for anthocyanin pigmentation in soybean. Groose RW; Schulte SM; Palmer RG Theor Appl Genet; 1990 Feb; 79(2):161-7. PubMed ID: 24226213 [TBL] [Abstract][Full Text] [Related]
7. TheSfm system of gene control inAntirrhinum majus. Aslam KM Theor Appl Genet; 1993 May; 86(4):401-5. PubMed ID: 24193585 [TBL] [Abstract][Full Text] [Related]
8. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. Martin C; Carpenter R; Sommer H; Saedler H; Coen ES EMBO J; 1985 Jul; 4(7):1625-30. PubMed ID: 16453618 [TBL] [Abstract][Full Text] [Related]
9. Genetic instability of anthocyanin production in Impatiens balsamina. Sastry GR Theor Appl Genet; 1982 Mar; 63(1):87-95. PubMed ID: 24270706 [TBL] [Abstract][Full Text] [Related]
10. Chalcone Synthase-Encoding Li Y; Cui W; Qi X; Qiao C; Lin M; Zhong Y; Hu C; Fang J Genes (Basel); 2019 Nov; 10(12):. PubMed ID: 31757002 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. Castellarin SD; Di Gaspero G BMC Plant Biol; 2007 Aug; 7():46. PubMed ID: 17760970 [TBL] [Abstract][Full Text] [Related]
12. [The mutability of the plastids of strain 50 of Antirrhinum majus L]. MALY R Z Vererbungsl; 1958; 89(5):692-6. PubMed ID: 13648690 [No Abstract] [Full Text] [Related]
13. UV-B-induced anthocyanin accumulation in hypocotyls of radish sprouts continues in the dark after irradiation. Su N; Lu Y; Wu Q; Liu Y; Xia Y; Xia K; Cui J J Sci Food Agric; 2016 Feb; 96(3):886-92. PubMed ID: 25754879 [TBL] [Abstract][Full Text] [Related]
14. Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Boase MR; Brendolise C; Wang L; Ngo H; Espley RV; Hellens RP; Schwinn KE; Davies KM; Albert NW Plant Cell Rep; 2015 Oct; 34(10):1817-23. PubMed ID: 26113165 [TBL] [Abstract][Full Text] [Related]
15. Ultraviolet-B-Responsive Anthocyanin Production in a Rice Cultivar Is Associated with a Specific Phase of Phenylalanine Ammonia Lyase Biosynthesis. Reddy VS; Goud KV; Sharma R; Reddy AR Plant Physiol; 1994 Aug; 105(4):1059-1066. PubMed ID: 12232265 [TBL] [Abstract][Full Text] [Related]
16. Regulation of anthocyanin biosynthesis in UV-A-irradiated cell cultures of carrot and in organs of intact carrot plants. Hirner AA; Veit S; Seitz HU Plant Sci; 2001 Jul; 161(2):315-322. PubMed ID: 11448762 [TBL] [Abstract][Full Text] [Related]
17. Effects of Epidermal Cell Shape and Pigmentation on Optical Properties of Antirrhinum Petals at Visible and Ultraviolet Wavelengths. Gorton HL; Vogelmann TC Plant Physiol; 1996 Nov; 112(3):879-888. PubMed ID: 12226425 [TBL] [Abstract][Full Text] [Related]
18. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. Shang Y; Venail J; Mackay S; Bailey PC; Schwinn KE; Jameson PE; Martin CR; Davies KM New Phytol; 2011 Jan; 189(2):602-15. PubMed ID: 21039563 [TBL] [Abstract][Full Text] [Related]
19. The molecular basis of incomplete dominance at the A locus of CHS-D in the common morning glory, Ipomoea purpurea. Johzuka-Hisatomi Y; Noguchi H; Iida S J Plant Res; 2011 Mar; 124(2):299-304. PubMed ID: 20680382 [TBL] [Abstract][Full Text] [Related]
20. Ectopic expression of Lc differentially regulated anthocyanin biosynthesis in the floral parts of tobacco (Nicotiana tobacum L.) plants. Huang ZA; Zhao T; Wang N; Zheng SS Bot Stud; 2016 Dec; 57(1):24. PubMed ID: 28597434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]