BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24270736)

  • 1. CD2-positive B-cell precursor acute lymphoblastic leukemia with an early switch to the monocytic lineage.
    Slamova L; Starkova J; Fronkova E; Zaliova M; Reznickova L; van Delft FW; Vodickova E; Volejnikova J; Zemanova Z; Polgarova K; Cario G; Figueroa M; Kalina T; Fiser K; Bourquin JP; Bornhauser B; Dworzak M; Zuna J; Trka J; Stary J; Hrusak O; Mejstrikova E
    Leukemia; 2014 Mar; 28(3):609-20. PubMed ID: 24270736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of residual disease in pediatric B-cell precursor acute lymphoblastic leukemia by comparative phenotype mapping: a study of five cases controlled by genetic methods.
    Dworzak MN; Stolz F; Fröschl G; Printz D; Henn T; Fischer S; Fleischer C; Haas OA; Fritsch G; Gadner H; Panzer-Grümayer ER
    Exp Hematol; 1999 Apr; 27(4):673-81. PubMed ID: 10210325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DUX4r, ZNF384r and PAX5-P80R mutated B-cell precursor acute lymphoblastic leukemia frequently undergo monocytic switch.
    Novakova M; Zaliova M; Fiser K; Vakrmanova B; Slamova L; Musilova A; Brüggemann M; Ritgen M; Fronkova E; Kalina T; Stary J; Winkowska L; Svec P; Kolenova A; Stuchly J; Zuna J; Trka J; Hrusak O; Mejstrikova E
    Haematologica; 2021 Aug; 106(8):2066-2075. PubMed ID: 32646889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The immunophenotypes of blast cells in B-cell precursor acute lymphoblastic leukemia: how different are they from their normal counterparts?
    Sędek Ł; Bulsa J; Sonsala A; Twardoch M; Wieczorek M; Malinowska I; Derwich K; Niedźwiecki M; Sobol-Milejska G; Kowalczyk JR; Mazur B; Szczepański T
    Cytometry B Clin Cytom; 2014 Sep; 86(5):329-39. PubMed ID: 24845957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD371-positive pediatric B-cell acute lymphoblastic leukemia: propensity to lineage switch and slow early response to treatment.
    Buldini B; Varotto E; Maurer-Granofszky M; Gaipa G; Schumich A; Brüggemann M; Mejstrikova E; Cazzaniga G; Hrusak O; Szczepanowski M; Scarparo P; Zimmermann M; Strehl S; Schinnerl D; Zaliova M; Karawajew L; Bourquin JP; Feuerstein T; Cario G; Alten J; Möricke A; Biffi A; Parasole R; Fagioli F; Valsecchi MG; Biondi A; Locatelli F; Attarbaschi A; Schrappe M; Conter V; Basso G; Dworzak MN
    Blood; 2024 Apr; 143(17):1738-1751. PubMed ID: 38215390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment and characterization of human B cell precursor-leukemia cell lines.
    Matsuo Y; Drexler HG
    Leuk Res; 1998 Jul; 22(7):567-79. PubMed ID: 9680106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of CD73, CD86 and CD304 in normal vs. leukemic B-cell precursors and their utility as stable minimal residual disease markers in childhood B-cell precursor acute lymphoblastic leukemia.
    Sędek Ł; Theunissen P; Sobral da Costa E; van der Sluijs-Gelling A; Mejstrikova E; Gaipa G; Sonsala A; Twardoch M; Oliveira E; Novakova M; Buracchi C; van Dongen JJM; Orfao A; van der Velden VHJ; Szczepański T;
    J Immunol Methods; 2019 Dec; 475():112429. PubMed ID: 29530508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TEL-AML1 fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia.
    Cayuela JM; Baruchel A; Orange C; Madani A; Auclerc MF; Daniel MT; Schaison G; Sigaux F
    Blood; 1996 Jul; 88(1):302-8. PubMed ID: 8704188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Flow cytometric detection of minimal residual disease in pre-cursor-B-acute lymphoblastic leukemia on the basis of phenotypic aberrancies on minor leukemic cell populations].
    Wu M; Sun XF; Xu ZM; Zhang XY; Li FR; Wang XG; Chen XL; Lin HQ; Wen HG; Sun X; Song TW
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2005 Aug; 13(4):557-62. PubMed ID: 16129033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of CD24 antigen expression in B-lineage acute lymphoblastic leukemia is associated with intrinsic radiation resistance of primary clonogenic blasts.
    Uckun FM; Song CW
    Blood; 1993 Mar; 81(5):1323-32. PubMed ID: 8443393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lineage switch from precursor B cell acute lymphoblastic leukemia to acute monocytic leukemia at relapse.
    Imataki O; Ohnishi H; Yamaoka G; Arai T; Kitanaka A; Kubota Y; Kushida Y; Ishida T; Tanaka T
    Int J Clin Oncol; 2010 Feb; 15(1):112-5. PubMed ID: 20066454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia.
    van Wering ER; Beishuizen A; Roeffen ET; van der Linden-Schrever BE; Verhoeven MA; Hählen K; Hooijkaas H; van Dongen JJ
    Leukemia; 1995 Sep; 9(9):1523-33. PubMed ID: 7658722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical features and treatment outcome of children with biphenotypic CD2+ CD19+ acute lymphoblastic leukemia: a Children's Cancer Group study.
    Uckun FM; Gaynon P; Sather H; Arthur D; Trigg M; Tubergen D; Nachman J; Steinherz P; Sensel MG; Reaman GR
    Blood; 1997 Apr; 89(7):2488-93. PubMed ID: 9116293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute lymphocyte count is associated with minimal residual disease level in childhood B-cell precursor acute lymphoblastic leukemia.
    Shen HQ; Feng JH; Tang YM; Song H; Yang SL; Shi SW; Xu WQ
    Leuk Res; 2013 Jun; 37(6):671-4. PubMed ID: 23453285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The in-vitro response of CD2-positive acute myelogenous leukemia to proliferation and differentiation inducing agents.
    Traweek ST; Ben-Ezra J; Braziel RM; Winberg CD
    Leuk Res; 1990; 14(5):433-40. PubMed ID: 1693168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative expression of regulatory and differentiation-related genes in the key steps of human hematopoiesis: The LeukoStage Database.
    Polgárová K; Vášková M; Froňková E; Slámová L; Kalina T; Mejstříková E; Dobiášová A; Fišer K; Hrušák O
    Differentiation; 2016; 91(1-3):19-28. PubMed ID: 26674556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation.
    Ferrando AA; Armstrong SA; Neuberg DS; Sallan SE; Silverman LB; Korsmeyer SJ; Look AT
    Blood; 2003 Jul; 102(1):262-8. PubMed ID: 12637319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of functional CD40 in B-lineage acute lymphoblastic leukemia cells in response to T-cell CD40 ligand.
    Renard N; Lafage-Pochitaloff M; Durand I; Duvert V; Coignet L; Banchereau J; Saeland S
    Blood; 1996 Jun; 87(12):5162-70. PubMed ID: 8652829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protumoral role of monocytes in human B-cell precursor acute lymphoblastic leukemia: involvement of the chemokine CXCL10.
    Lee Y; Chittezhath M; André V; Zhao H; Poidinger M; Biondi A; D'Amico G; Biswas SK
    Blood; 2012 Jan; 119(1):227-37. PubMed ID: 22058116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of leukemic cells in CD2/CD19 double positive acute lymphoblastic leukemia.
    Manabe A; Mori T; Ebihara Y; Koyama T; Okuyama I; Hosoya R; Kaneko M; Ishimoto K; Nakahata T; Nakazawa S
    Int J Hematol; 1998 Jan; 67(1):45-52. PubMed ID: 9594444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.