These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24270769)

  • 41. CdTe and graphene co-sensitized TiO2 nanotube array photoanodes for protection of 304SS under visible light.
    Li H; Wang X; Zhang L; Hou B
    Nanotechnology; 2015 Apr; 26(15):155704. PubMed ID: 25804558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrochemical construction of hierarchically ordered CdSe-sensitized TiO2 nanotube arrays: towards versatile photoelectrochemical water splitting and photoredox applications.
    Xiao FX; Miao J; Wang HY; Yang H; Chen J; Liu B
    Nanoscale; 2014 Jun; 6(12):6727-37. PubMed ID: 24821322
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ synthesis of Bi2S3 sensitized WO3 nanoplate arrays with less interfacial defects and enhanced photoelectrochemical performance.
    Liu C; Yang Y; Li W; Li J; Li Y; Chen Q
    Sci Rep; 2016 Mar; 6():23451. PubMed ID: 26988275
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electronic properties of free-standing TiO2 nanotube arrays fabricated by electrochemical anodization.
    Chen CL; Dong CL; Chen CH; Wu JW; Lu YR; Lin CJ; Liou SY; Tseng CM; Kumar K; Wei DH; Guo J; Chou WC; Wu MK
    Phys Chem Chem Phys; 2015 Sep; 17(34):22064-71. PubMed ID: 26234367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays.
    Li Z; Xiong S; Wang G; Xie Z; Zhang Z
    Sci Rep; 2016 Jan; 6():19754. PubMed ID: 26790759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iron Modified Titanate Nanotube Arrays for Photoelectrochemical Removal of
    Chen CH; Peng YP; Lin MH; Chang KL; Lin YC; Sun J
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443780
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light.
    Zhang H; Fan X; Quan X; Chen S; Yu H
    Environ Sci Technol; 2011 Jul; 45(13):5731-6. PubMed ID: 21663048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of Ag nanoparticles embedded in TiO2 nanotubes: using electrospun nanofibers for controlling plasmonic effects.
    Jung MH; Yun YJ; Chu MJ; Kang MG
    Chemistry; 2013 Jun; 19(26):8543-9. PubMed ID: 23649856
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance.
    Wang Y; Zhang YY; Tang J; Wu H; Xu M; Peng Z; Gong XG; Zheng G
    ACS Nano; 2013 Oct; 7(10):9375-83. PubMed ID: 24047133
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photodeposition of Ag2S quantum dots and application to photoelectrochemical cells for hydrogen production under simulated sunlight.
    Nagasuna K; Akita T; Fujishima M; Tada H
    Langmuir; 2011 Jun; 27(11):7294-300. PubMed ID: 21553826
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assembly of Ag3PO4 nanoparticles on two-dimensional Ag2S sheets as visible-light-driven photocatalysts.
    Ma P; Yu H; Yu Y; Wang W; Wang H; Zhang J; Fu Z
    Phys Chem Chem Phys; 2016 Feb; 18(5):3638-43. PubMed ID: 26753745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting.
    Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S
    Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient photoelectrochemical water-splitting over carbon membrane linked Au and TiO
    Zhang X; Xue P; Jia J; Hu X; Fan J; Liu E
    Nanotechnology; 2019 Oct; 30(43):435403. PubMed ID: 31342936
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photoelectrochemical Performance of Nanotubular Fe
    Sołtys-Mróz M; Syrek K; Pięta Ł; Malek K; Sulka GD
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564255
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation.
    Wang X; Zhao H; Quan X; Zhao Y; Chen S
    J Hazard Mater; 2009 Jul; 166(1):547-52. PubMed ID: 19131157
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation.
    Gui Q; Xu Z; Zhang H; Cheng C; Zhu X; Yin M; Song Y; Lu L; Chen X; Li D
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17053-8. PubMed ID: 25198058
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal Decomposition Fabrication of Fe2O3 Nanoparticle-Sensitized TiO2 Nanotube Arrays and Their Photoelectrochemical Properties.
    Zhu X; Cui X; Che Z; Jin X; Li M
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9717-20. PubMed ID: 26682402
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of a visible-light-driven plasmonic photocatalyst of AgVO₃@AgBr@Ag nanobelt heterostructures.
    Sang Y; Kuai L; Chen C; Fang Z; Geng B
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5061-8. PubMed ID: 24625247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and photoinduced charge-transfer properties of a ZnFe2O4-sensitized TiO2 nanotube array electrode.
    Li X; Hou Y; Zhao Q; Chen G
    Langmuir; 2011 Mar; 27(6):3113-20. PubMed ID: 21332125
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core-shell nanoparticles.
    Zhang X; Zhu Y; Yang X; Wang S; Shen J; Lin B; Li C
    Nanoscale; 2013 Apr; 5(8):3359-66. PubMed ID: 23467326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.