These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
441 related articles for article (PubMed ID: 24270835)
1. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots. Lai LH; Protesescu L; Kovalenko MV; Loi MA Phys Chem Chem Phys; 2014 Jan; 16(2):736-42. PubMed ID: 24270835 [TBL] [Abstract][Full Text] [Related]
2. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363 [TBL] [Abstract][Full Text] [Related]
3. Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films. Zhao H; Fan Z; Liang H; Selopal GS; Gonfa BA; Jin L; Soudi A; Cui D; Enrichi F; Natile MM; Concina I; Ma D; Govorov AO; Rosei F; Vomiero A Nanoscale; 2014 Jun; 6(12):7004-11. PubMed ID: 24839954 [TBL] [Abstract][Full Text] [Related]
5. Investigating photoinduced charge transfer in double- and single-emission PbS@CdS core@shell quantum dots. Zhao H; Liang H; Gonfa BA; Chaker M; Ozaki T; Tijssen P; Vidal F; Ma D Nanoscale; 2014 Jan; 6(1):215-25. PubMed ID: 24132400 [TBL] [Abstract][Full Text] [Related]
6. Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Lee HJ; Chen P; Moon SJ; Sauvage F; Sivula K; Bessho T; Gamelin DR; Comte P; Zakeeruddin SM; Seok SI; Grätzel M; Nazeeruddin MK Langmuir; 2009 Jul; 25(13):7602-8. PubMed ID: 19499942 [TBL] [Abstract][Full Text] [Related]
7. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. Wang J; Mora-Seró I; Pan Z; Zhao K; Zhang H; Feng Y; Yang G; Zhong X; Bisquert J J Am Chem Soc; 2013 Oct; 135(42):15913-22. PubMed ID: 24070636 [TBL] [Abstract][Full Text] [Related]
8. Highly efficient quantum dot-sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe). Yang L; McCue C; Zhang Q; Uchaker E; Mai Y; Cao G Nanoscale; 2015 Feb; 7(7):3173-80. PubMed ID: 25615827 [TBL] [Abstract][Full Text] [Related]
9. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the Performance of Sensitized Solar Cells with PbS/CH3NH3PbI3 Core/Shell Quantum Dots. Seo G; Seo J; Ryu S; Yin W; Ahn TK; Seok SI J Phys Chem Lett; 2014 Jun; 5(11):2015-20. PubMed ID: 26273888 [TBL] [Abstract][Full Text] [Related]
11. Photoelectrical properties of CdS/CdSe core/shell QDs modified anatase TiO Qiu Q; Wang P; Xu L; Wang D; Lin Y; Xie T Phys Chem Chem Phys; 2017 Jun; 19(24):15724-15733. PubMed ID: 28597886 [TBL] [Abstract][Full Text] [Related]
12. Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Abbas MA; Basit MA; Park TJ; Bang JH Phys Chem Chem Phys; 2015 Apr; 17(15):9752-60. PubMed ID: 25773573 [TBL] [Abstract][Full Text] [Related]
13. Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes. Sun M; Zhu D; Ji W; Jing P; Wang X; Xiang W; Zhao J ACS Appl Mater Interfaces; 2013 Dec; 5(23):12681-8. PubMed ID: 24206570 [TBL] [Abstract][Full Text] [Related]
14. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411 [TBL] [Abstract][Full Text] [Related]
15. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency. Yuan Z; Yin L Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160 [TBL] [Abstract][Full Text] [Related]
16. Structural evolution from the CdSSe alloy to the CdS/CdSe core/shell in Cd(S and Se) composite quantum dots and its impact on the performance of sensitized solar cells. Fang J; Lv W; Lei Y; Deng J; Zhang P; Huang W Dalton Trans; 2021 Oct; 50(41):14672-14683. PubMed ID: 34585707 [TBL] [Abstract][Full Text] [Related]
17. Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell. Dana J; Maiti S; Tripathi VS; Ghosh HN Chemistry; 2018 Feb; 24(10):2418-2425. PubMed ID: 29193394 [TBL] [Abstract][Full Text] [Related]
18. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Tian J; Zhang Q; Zhang L; Gao R; Shen L; Zhang S; Qu X; Cao G Nanoscale; 2013 Feb; 5(3):936-43. PubMed ID: 23166058 [TBL] [Abstract][Full Text] [Related]
19. Enhanced performance of lead sulfide quantum dot-sensitized solar cells by controlling the thickness of metal halide perovskite shells. Seo G; Kim S; Choi H; Kim MC Heliyon; 2023 Oct; 9(10):e20276. PubMed ID: 37767508 [TBL] [Abstract][Full Text] [Related]
20. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure. Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]