These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24270967)

  • 41. Listener Factors Associated with Individual Susceptibility to Reverberation.
    Reinhart PN; Souza PE
    J Am Acad Audiol; 2018 Jan; 29(1):73-82. PubMed ID: 29309025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interactions Between Digital Noise Reduction and Reverberation: Acoustic and Behavioral Effects.
    Reinhart P; Zahorik P; Souza P
    J Am Acad Audiol; 2020 Jan; 31(1):17-29. PubMed ID: 31267958
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The influence of audiovisual ceiling performance on the relationship between reverberation and directional benefit: perception and prediction.
    Wu YH; Bentler RA
    Ear Hear; 2012; 33(5):604-14. PubMed ID: 22677815
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The potential of onset enhancement for increased speech intelligibility in auditory prostheses.
    Koning R; Wouters J
    J Acoust Soc Am; 2012 Oct; 132(4):2569-81. PubMed ID: 23039450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of source-to-listener distance and masking on perception of cochlear implant processed speech in reverberant rooms.
    Whitmal NA; Poissant SF
    J Acoust Soc Am; 2009 Nov; 126(5):2556-69. PubMed ID: 19894835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Challenging Times for Cochlear Implant Users - Effect of Face Masks on Audiovisual Speech Understanding during the COVID-19 Pandemic.
    Sönnichsen R; Tó GL; Hohmann V; Hochmuth S; Radeloff A
    Trends Hear; 2022; 26():23312165221134378. PubMed ID: 36437739
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A channel-selection criterion for suppressing reverberation in cochlear implants.
    Kokkinakis K; Hazrati O; Loizou PC
    J Acoust Soc Am; 2011 May; 129(5):3221-32. PubMed ID: 21568424
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prior exposure to a reverberant listening environment improves speech intelligibility in adult cochlear implant listeners.
    Srinivasan NK; Tobey EA; Loizou PC
    Cochlear Implants Int; 2016; 17(2):98-104. PubMed ID: 26843090
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characteristics and international comparability of the Finnish matrix sentence test in cochlear implant recipients.
    Dietz A; Buschermöhle M; Sivonen V; Willberg T; Aarnisalo AA; Lenarz T; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():80-7. PubMed ID: 26364512
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Speech onset enhancement improves intelligibility in adverse listening conditions for cochlear implant users.
    Koning R; Wouters J
    Hear Res; 2016 Dec; 342():13-22. PubMed ID: 27697583
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Parameter tuning of time-frequency masking algorithms for reverberant artifact removal within the cochlear implant stimulus.
    Shahidi LK; Collins LM; Mainsah BO
    Cochlear Implants Int; 2022 Nov; 23(6):309-316. PubMed ID: 35875863
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparing Binaural Pre-processing Strategies II: Speech Intelligibility of Bilateral Cochlear Implant Users.
    Baumgärtel RM; Hu H; Krawczyk-Becker M; Marquardt D; Herzke T; Coleman G; Adiloğlu K; Bomke K; Plotz K; Gerkmann T; Doclo S; Kollmeier B; Hohmann V; Dietz M
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721921
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Evaluation of Output Signal to Noise Ratio as a Predictor of Cochlear Implant Speech Intelligibility.
    Watkins GD; Swanson BA; Suaning GJ
    Ear Hear; 2018; 39(5):958-968. PubMed ID: 29474218
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Speech perception with electric-acoustic stimulation : Comparison with bilateral cochlear implant users in different noise conditions].
    Rader T
    HNO; 2015 Feb; 63(2):85-93. PubMed ID: 25515123
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temporal Fine Structure Processing, Pitch, and Speech Perception in Adult Cochlear Implant Recipients.
    Dincer D'Alessandro H; Ballantyne D; Boyle PJ; De Seta E; DeVincentiis M; Mancini P
    Ear Hear; 2018; 39(4):679-686. PubMed ID: 29194080
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing.
    Fu QJ; Nogaki G
    J Assoc Res Otolaryngol; 2005 Mar; 6(1):19-27. PubMed ID: 15735937
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Intelligibility of Interrupted Speech: Cochlear Implant Users and Normal Hearing Listeners.
    Bhargava P; Gaudrain E; Başkent D
    J Assoc Res Otolaryngol; 2016 Oct; 17(5):475-91. PubMed ID: 27090115
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ideal time-frequency masking algorithms lead to different speech intelligibility and quality in normal-hearing and cochlear implant listeners.
    Koning R; Madhu N; Wouters J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):331-41. PubMed ID: 25167542
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Masking release and the contribution of obstruent consonants on speech recognition in noise by cochlear implant users.
    Li N; Loizou PC
    J Acoust Soc Am; 2010 Sep; 128(3):1262-71. PubMed ID: 20815461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.