BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 24271475)

  • 1. Forty-five years of developmental biology of photosynthetic bacteria.
    Gerhart D
    Photosynth Res; 1996 Jun; 48(3):325-52. PubMed ID: 24271475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.
    Niederman RA
    Photosynth Res; 2013 Oct; 116(2-3):333-48. PubMed ID: 23708977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of the light-harvesting complex I (B870) of anoxygenic phototrophic purple bacteria.
    Drews G
    Arch Microbiol; 1996 Sep; 166(3):151-9. PubMed ID: 8703191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K; Harrold JW; Kay JM; Niederman RA
    J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restricted Localization of Photosynthetic Intracytoplasmic Membranes (ICMs) in Multiple Genera of Purple Nonsulfur Bacteria.
    LaSarre B; Kysela DT; Stein BD; Ducret A; Brun YV; McKinlay JB
    mBio; 2018 Jul; 9(4):. PubMed ID: 29970460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane biogenesis in anoxygenic photosynthetic prokaryotes.
    Drews G; Niederman RA
    Photosynth Res; 2002; 73(1-3):87-94. PubMed ID: 16245108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular-organization and biosynthesis of pigment-protein complexes of Rhodopseudomonas capsulata.
    Drews G; Peters J; Dierstein R
    Ann Microbiol (Paris); 1983; 134B(1):151-8. PubMed ID: 6357026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intracytoplasmic membranes of purple bacteria--assembly of energy-transducing complexes.
    Drews G
    J Mol Microbiol Biotechnol; 2013; 23(1-2):35-47. PubMed ID: 23615194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transport in green photosynthetic bacteria.
    Blankenship RE
    Photosynth Res; 1985 Dec; 6(4):317-33. PubMed ID: 24442952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides.
    Strakhovskaya MG; Lukashev EP; Korvatovskiy BN; Kholina EG; Seifullina NK; Knox PP; Paschenko VZ
    Photosynth Res; 2021 Feb; 147(2):197-209. PubMed ID: 33389445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of bacteriochlorophyll and carotenoid synthesis in formation of intracytoplasmic membrane systems and pigment-protein complexes in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114.
    Iba K; Takamiya K; Toh Y; Nishimura M
    J Bacteriol; 1988 Apr; 170(4):1843-7. PubMed ID: 3280552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy studies of native photosynthetic membranes.
    Sturgis JN; Tucker JD; Olsen JD; Hunter CN; Niederman RA
    Biochemistry; 2009 May; 48(17):3679-98. PubMed ID: 19265434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light harvesting in phototrophic bacteria: structure and function.
    Saer RG; Blankenship RE
    Biochem J; 2017 Jun; 474(13):2107-2131. PubMed ID: 28611239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of the photosynthetic membranes of Rhodopseudomonas sphaeroides.
    Kaplan S; Cain BD; Donohue TJ; Shepherd WD; Yen GS
    J Cell Biochem; 1983; 22(1):15-29. PubMed ID: 6607927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The prochlorophytes: are they more than just chlorophyll a/b-containing cyanobacteria?
    Bullerjahn GS; Post AF
    Crit Rev Microbiol; 1993; 19(1):43-59. PubMed ID: 8481212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein phosphorylation and control of excitation energy transfer in photosynthetic purple bacteria and cyanobacteria.
    Allen JF; Harrison MA; Holmes NG
    Biochimie; 1989; 71(9-10):1021-8. PubMed ID: 2512993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria.
    Niederman RA
    Biochim Biophys Acta; 2016 Mar; 1857(3):232-46. PubMed ID: 26519773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eukaryotic behaviour of a prokaryotic energy-transducing membrane: fully detached vesicular organelles arise by budding from the Rhodobacter sphaeroides intracytoplasmic photosynthetic membrane.
    Niederman RA
    Mol Microbiol; 2010 May; 76(4):803-5. PubMed ID: 20412442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic characterization of the Rhodobacter sphaeroides 2.4.1 photosynthetic membrane: identification of new proteins.
    Zeng X; Roh JH; Callister SJ; Tavano CL; Donohue TJ; Lipton MS; Kaplan S
    J Bacteriol; 2007 Oct; 189(20):7464-74. PubMed ID: 17704227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.