These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 24271475)

  • 21. Molecular factors controlling photosynthetic light harvesting by carotenoids.
    Polívka T; Frank HA
    Acc Chem Res; 2010 Aug; 43(8):1125-34. PubMed ID: 20446691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum centenum.
    Ragatz L; Jiang ZY; Bauer CE; Gest H
    Arch Microbiol; 1995 Jan; 163(1):1-6. PubMed ID: 7710317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane Dynamics in Phototrophic Bacteria.
    Mullineaux CW; Liu LN
    Annu Rev Microbiol; 2020 Sep; 74():633-654. PubMed ID: 32689916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and characterization of the peripheral antenna of the purple-sulfur bacterium Chromatium purpuratum: evidence of an unusual pigment-protein composition.
    Kerfeld CA; Yeates TO; Thornber JP
    Biochemistry; 1994 Mar; 33(8):2178-84. PubMed ID: 8117674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Comparative study of light-harvesting complexes of purple photosynthetic bacteria Chromatium minutissimum and Rhodopseudomonas palustris].
    Erokhin IuE; Chugunov VA; Makhneva ZK; Agrikova IM; Shanturova TV
    Biokhimiia; 1977 Oct; 42(10):1817-24. PubMed ID: 922068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. History of concepts of the comparative biochemistry of oxygenic and anoxygenic photosyntheses.
    Gest H
    Photosynth Res; 1993 Jan; 35(1):87-96. PubMed ID: 24318623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov.
    Spring S; Lünsdorf H; Fuchs BM; Tindall BJ
    PLoS One; 2009; 4(3):e4866. PubMed ID: 19287491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative proteomic analysis of intracytoplasmic membrane development in Rhodobacter sphaeroides.
    Jackson PJ; Lewis HJ; Tucker JD; Hunter CN; Dickman MJ
    Mol Microbiol; 2012 Jun; 84(6):1062-78. PubMed ID: 22621241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. X-ray diffraction studies on chromatophore membrane from photosynthetic bacteria. II. Comparison of diffraction patterns of photosynthetic units from various purple bacteria.
    Kataoka M; Inai K; Ueki T; Yamashita J
    J Biochem; 1984 Feb; 95(2):567-73. PubMed ID: 6425275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence micro-spectroscopy study of individual photosynthetic membrane vesicles and light-harvesting complexes.
    Leiger K; Reisberg L; Freiberg A
    J Phys Chem B; 2013 Aug; 117(32):9315-26. PubMed ID: 23859536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery.
    Scheuring S; Sturgis JN
    Photosynth Res; 2009; 102(2-3):197-211. PubMed ID: 19266309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chlorosome antenna complexes from green photosynthetic bacteria.
    Orf GS; Blankenship RE
    Photosynth Res; 2013 Oct; 116(2-3):315-31. PubMed ID: 23761131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs.
    Selyanin V; Hauruseu D; Koblížek M
    Photosynth Res; 2016 Apr; 128(1):35-43. PubMed ID: 26482589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thinking about the evolution of photosynthesis.
    Olson JM; Blankenship RE
    Photosynth Res; 2004; 80(1-3):373-86. PubMed ID: 16328834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular aspects of nitrogen fixation by photosynthetic prokaryotes.
    Hallenbeck PC
    Crit Rev Microbiol; 1987; 14(1):1-48. PubMed ID: 3103981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling.
    Sturgis JN; Niederman RA
    Photosynth Res; 2008; 95(2-3):269-78. PubMed ID: 17922302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles.
    Tucker JD; Siebert CA; Escalante M; Adams PG; Olsen JD; Otto C; Stokes DL; Hunter CN
    Mol Microbiol; 2010 May; 76(4):833-47. PubMed ID: 20444085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems.
    Şener M; Strümpfer J; Hsin J; Chandler D; Scheuring S; Hunter CN; Schulten K
    Chemphyschem; 2011 Feb; 12(3):518-31. PubMed ID: 21344591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: biochemical and morphological studies.
    Chory J; Donohue TJ; Varga AR; Staehelin LA; Kaplan S
    J Bacteriol; 1984 Aug; 159(2):540-54. PubMed ID: 6611335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria.
    Frigaard NU; Bryant DA
    Arch Microbiol; 2004 Oct; 182(4):265-76. PubMed ID: 15340781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.