These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24271593)

  • 1. Optimal search direction for an animal flying or swimming in a wind or current.
    Dusenbery DB
    J Chem Ecol; 1989 Nov; 15(11):2511-9. PubMed ID: 24271593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects.
    Bau J; Cardé RT
    Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active anemosensing hypothesis: how flying insects could estimate ambient wind direction through sensory integration and active movement.
    van Breugel F; Jewell R; Houle J
    J R Soc Interface; 2022 Aug; 19(193):20220258. PubMed ID: 36043287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations on the flight paths of the day-flying moth Virbia lamae during periods of mate location: do males have a strategy for contacting the pheromone plume?
    Cardé RT; Cardé AM; Girling RD
    J Anim Ecol; 2012 Jan; 81(1):268-76. PubMed ID: 21729068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies.
    Reynolds AM; Reynolds DR; Sane SP; Hu G; Chapman JW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of vision in odor-plume tracking by walking and flying insects.
    Willis MA; Avondet JL; Zheng E
    J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetry hidden in birds' tracks reveals wind, heading, and orientation ability over the ocean.
    Goto Y; Yoda K; Sato K
    Sci Adv; 2017 Sep; 3(9):e1700097. PubMed ID: 28959724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight.
    Safi K; Kranstauber B; Weinzierl R; Griffin L; Rees EC; Cabot D; Cruz S; Proaño C; Takekawa JY; Newman SH; Waldenström J; Bengtsson D; Kays R; Wikelski M; Bohrer G
    Mov Ecol; 2013; 1(1):4. PubMed ID: 25709818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    PLoS One; 2010 Dec; 5(12):e15758. PubMed ID: 21209956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Odor-modulated upwind flight of the sphinx moth, Manduca sexta L.
    Willis MA; Arbas EA
    J Comp Physiol A; 1991 Oct; 169(4):427-40. PubMed ID: 1779417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upwind searching for an odor plume is sometimes optimal.
    Dusenbery DB
    J Chem Ecol; 1990 Jun; 16(6):1971-6. PubMed ID: 24263999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable wind directions and anemotactic strategies of searching for an odour plume.
    Sabelis MW; Schippers P
    Oecologia; 1984 Aug; 63(2):225-228. PubMed ID: 28311017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of flow direction in high-flying insect and songbird migrants.
    Chapman JW; Nilsson C; Lim KS; Bäckman J; Reynolds DR; Alerstam T; Reynolds AM
    Curr Biol; 2015 Aug; 25(17):R751-2. PubMed ID: 26325133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
    Chapman JW; Reynolds DR; Mouritsen H; Hill JK; Riley JR; Sivell D; Smith AD; Woiwod IP
    Curr Biol; 2008 Apr; 18(7):514-8. PubMed ID: 18394893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, Periplaneta americana (L.).
    Willis MA; Avondet JL; Finnell AS
    J Exp Biol; 2008 Jul; 211(Pt 14):2317-26. PubMed ID: 18587126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compensation for wind drift in the nocturnally migrating Song Thrushes in relation to altitude and wind.
    Sinelschikova A; Vorotkov M; Bulyuk V; Bolshakov C
    Behav Processes; 2020 Aug; 177():104154. PubMed ID: 32479841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wind-Related Orientation Patterns in Diurnal, Crepuscular and Nocturnal High-Altitude Insect Migrants.
    Hu G; Lim KS; Reynolds DR; Reynolds AM; Chapman JW
    Front Behav Neurosci; 2016; 10():32. PubMed ID: 26973481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. European shags optimize their flight behavior according to wind conditions.
    Kogure Y; Sato K; Watanuki Y; Wanless S; Daunt F
    J Exp Biol; 2016 Feb; 219(Pt 3):311-8. PubMed ID: 26847559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single wind-mediated mechanism explains high-altitude 'non-goal oriented' headings and layering of nocturnally migrating insects.
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    Proc Biol Sci; 2010 Mar; 277(1682):765-72. PubMed ID: 19889697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the role of wind information for efficient chemical plume tracing based on optogenetic silkworm moth behavior.
    Shigaki S; Haigo S; Hernandez Reyes C; Sakurai T; Kanzaki R; Kurabayashi D; Sezutsu H
    Bioinspir Biomim; 2019 May; 14(4):046006. PubMed ID: 31026859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.