These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24271629)

  • 21. Nature of cell-to-cell transfer of auxin in polar transport.
    Cande WZ; Ray PM
    Planta; 1976 Jan; 129(1):43-52. PubMed ID: 24430814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 5'-Azido-[3,6-3H2]-1-napthylphthalamic acid, a photoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: identification of a 23-kDa protein from maize coleoptile plasma membranes.
    Zettl R; Feldwisch J; Boland W; Schell J; Palme K
    Proc Natl Acad Sci U S A; 1992 Jan; 89(2):480-4. PubMed ID: 11607252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem.
    Morris DA; Johnson CF
    Planta; 1990 Apr; 181(1):117-24. PubMed ID: 24196683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auxin movement in corn coleoptiles.
    Hertel R; Flory R
    Planta; 1968 Jun; 82(2):123-44. PubMed ID: 24519834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Inversion on Growth and Movement of Indole-3-acetic Acid in Coleoptiles.
    Little CH; Goldsmith MH
    Plant Physiol; 1967 Sep; 42(9):1239-45. PubMed ID: 16656645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells.
    Siemieniuk A; Karcz W
    AoB Plants; 2015 Jun; 7():. PubMed ID: 26134122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The decrease in auxin polar transport down the lupin hypocotyl could produce the indole-3-acetic Acid distribution responsible for the elongation growth pattern.
    Sánchez-Bravo J; Ortuño AM; Botía JM; Acosta M; Sabater F
    Plant Physiol; 1992 Sep; 100(1):108-14. PubMed ID: 16652931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx in Arabidopsis thaliana.
    Suzuki H; Matano N; Nishimura T; Koshiba T
    Plant Signal Behav; 2014 May; 9():. PubMed ID: 24800738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of polar auxin transport in grapevine fruitlets (Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission.
    Kühn N; Serrano A; Abello C; Arce A; Espinoza C; Gouthu S; Deluc L; Arce-Johnson P
    BMC Plant Biol; 2016 Oct; 16(1):234. PubMed ID: 27793088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maintenance of polar auxin transport in Zea coleoptiles by anaerobic metabolism.
    Wilkins MB; Whyte P
    Planta; 1968 Dec; 82(4):307-16. PubMed ID: 24518992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: effects on the components of transmembrane transport of indol-3yl-acetic acid.
    Johnson CF; Morris DA
    Planta; 1987 Nov; 172(3):400-7. PubMed ID: 24225925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Comparative Study of Carrier Participation in the Transport of 2,3,5-triiodobenzoic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid by Cucurbita pepo L. Hypocotyl Segments.
    Depta H; Rubery PH
    J Plant Physiol; 1984 Aug; 115(5):371-87. PubMed ID: 23194793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Components of auxin transport in stem segments of Pisum sativum L.
    Davies PJ; Rubery PH
    Planta; 1978 Jan; 142(2):211-9. PubMed ID: 24408105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can lateral redistribution of auxin account for phototropism of maize coleoptiles?
    Baskin TI; Briggs WR; Iino M
    Plant Physiol; 1986 May; 81(1):306-9. PubMed ID: 16664796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitory action of red light on the growth of the maize mesocotyl: evaluation of the auxin hypothesis.
    Iino M
    Planta; 1982 Dec; 156(5):388-95. PubMed ID: 24272650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IAA transport during the phototropic responses of intact Zea and Avena coleoptiles.
    Gardner G; Shaw S; Wilkins MB
    Planta; 1974 Jan; 121(3):237-51. PubMed ID: 24442803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique.
    McLamore ES; Diggs A; Calvo Marzal P; Shi J; Blakeslee JJ; Peer WA; Murphy AS; Porterfield DM
    Plant J; 2010 Sep; 63(6):1004-16. PubMed ID: 20626658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell wall pH and auxin transport velocity.
    Hasenstein KH; Rayle D
    Plant Physiol; 1984 Sep; 76(1):65-7. PubMed ID: 11540807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethylene modification of an auxin pulse in cotton stem sections.
    Beyer EM; Morgan PW
    Plant Physiol; 1969 Dec; 44(12):1690-4. PubMed ID: 16657258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.
    Sugawara S; Mashiguchi K; Tanaka K; Hishiyama S; Sakai T; Hanada K; Kinoshita-Tsujimura K; Yu H; Dai X; Takebayashi Y; Takeda-Kamiya N; Kakimoto T; Kawaide H; Natsume M; Estelle M; Zhao Y; Hayashi K; Kamiya Y; Kasahara H
    Plant Cell Physiol; 2015 Aug; 56(8):1641-54. PubMed ID: 26076971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.