These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 24272187)
1. Leek odor analysis by gas chromatography and identification of the most active substance for the leek moth,Acrolepiopsis assectella. Auger J; Lecomte C; Thibout E J Chem Ecol; 1989 Jun; 15(6):1847-54. PubMed ID: 24272187 [TBL] [Abstract][Full Text] [Related]
2. Comparative life tables of leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae), in its native range. Jenner WH; Kuhlmann U; Mason PG; Cappuccino N Bull Entomol Res; 2010 Feb; 100(1):87-97. PubMed ID: 19323855 [TBL] [Abstract][Full Text] [Related]
3. Increased sulfur precursors and volatiles production by the leek Allium porrum in response to specialist insect attack. Dugravot S; Mondy N; Mandon N; Thibout E J Chem Ecol; 2005 Jun; 31(6):1299-314. PubMed ID: 16222772 [TBL] [Abstract][Full Text] [Related]
4. Identification of leek-moth and diamondback-moth frass volatiles that stimulate parasitoid,Diadromus pulchellus. Auger J; Lecomte C; Paris J; Thibout E J Chem Ecol; 1989 Apr; 15(4):1391-8. PubMed ID: 24272020 [TBL] [Abstract][Full Text] [Related]
5. Food experience on the predatory behavior of the ant Myrmica rubra towards a specialist moth, Acrolepiopsis assectella. Le Roux AM; Le Roux G; Thibout E J Chem Ecol; 2002 Nov; 28(11):2307-14. PubMed ID: 12523570 [TBL] [Abstract][Full Text] [Related]
6. Dietary effects of phytoecdysones in the leek-moth,Acrolepiopsis assectella Zell. (Lepidoptera: Acrolepiidae). Arnault C; Sláma K J Chem Ecol; 1986 Oct; 12(10):1979-86. PubMed ID: 24306462 [TBL] [Abstract][Full Text] [Related]
7. Origin of kairomones in the leek moth (Acrolepiopsis assectella, Lep.) frass : Possible pathway from methylthio to propylthio compounds. Auger J; Lecomte C; Thibout E J Chem Ecol; 1990 Jun; 16(6):1743-50. PubMed ID: 24263981 [TBL] [Abstract][Full Text] [Related]
8. Effects of the Diadromus pulchellus ascovirus, DpAV-4, on the hemocytic encapsulation response and capsule melanization of the leek-moth pupa, Acrolepiopsis assectella. Renault S; Petit A; Bénédet F; Bigot S; Bigot Y J Insect Physiol; 2002 Mar; 48(3):297-302. PubMed ID: 12770103 [TBL] [Abstract][Full Text] [Related]
9. The cypovirus Diadromus pulchellus RV-2 is sporadically associated with the endoparasitoid wasp D. pulchellus and modulates the defence mechanisms of pupae of the parasitized leek-moth, Acrolepiopsis assectella. Renault S; Bigot S; Lemesle M; Sizaret PY; Bigot Y J Gen Virol; 2003 Jul; 84(Pt 7):1799-1807. PubMed ID: 12810874 [TBL] [Abstract][Full Text] [Related]
10. Development and Evaluation of Degree-Day Models for Acrolepiopsis assectella (Lepidoptera: Acrolepiidae) Based on Hosts and Flight Patterns. Seto M; Shelton AM J Econ Entomol; 2016 Apr; 109(2):613-21. PubMed ID: 26685110 [TBL] [Abstract][Full Text] [Related]
11. [The effect of the flowers of Allium porrum L. on the development of the leek moth (Acrolepia assectella Zeller, Lepidoptera)]. Arnault C C R Acad Hebd Seances Acad Sci D; 1975 Jun; 280(21):2477-80. PubMed ID: 808287 [No Abstract] [Full Text] [Related]
12. Origin and identification of bacteria which produce kairomones in the frass of Acrolepiopsis assectella (Lep., Hyponomeutoidea). Thibout E; Guillot JF; Ferary S; Limouzin P; Auger J Experientia; 1995 Nov; 51(11):1073-5. PubMed ID: 7498448 [TBL] [Abstract][Full Text] [Related]
13. The Acrolepiopsis assectella silk cocoon: kairomonal function and chemical characterisation. Gauthier N; Mandon N; Renault S; Bénédet F J Insect Physiol; 2004 Nov; 50(11):1065-74. PubMed ID: 15607509 [TBL] [Abstract][Full Text] [Related]
14. [Determinism of the displacements of the first stage larvae of Acrolepiopsis (Acrolepia) assectella Zell. (Lepidoptera) in the host plant]. Thibout E C R Acad Hebd Seances Acad Sci D; 1975 Oct; 281(14):1039-42. PubMed ID: 813872 [TBL] [Abstract][Full Text] [Related]
15. [AFLP marking of the genotypes of leek (Allium porrum) varieties]. Filiushin MA; Kholda OA; Kochieva EZ; Ryzhova NN Genetika; 2011 Apr; 47(4):560-5. PubMed ID: 21675247 [TBL] [Abstract][Full Text] [Related]
16. Native range assessment of classical biological control agents: impact of inundative releases as pre-introduction evaluation. Jenner WH; Mason PG; Cappuccino N; Kuhlmann U Bull Entomol Res; 2010 Aug; 100(4):387-94. PubMed ID: 19814849 [TBL] [Abstract][Full Text] [Related]
17. Influence of cultivar and harvest time on the amounts of isoalliin and methiin in leek (Allium ampeloprasum var. porrum). Bernaert N; Goetghebeur L; De Clercq H; De Loose M; Daeseleire E; Van Pamel E; Van Bockstaele E; Van Droogenbroeck B J Agric Food Chem; 2012 Nov; 60(44):10910-9. PubMed ID: 23020262 [TBL] [Abstract][Full Text] [Related]
18. Composition and properties of biologically active pectic polysaccharides from leek (Allium porrum). Kratchanova M; Nikolova M; Pavlova E; Yanakieva I; Kussovski V J Sci Food Agric; 2010 Sep; 90(12):2046-51. PubMed ID: 20572062 [TBL] [Abstract][Full Text] [Related]
19. Applications of direct analysis in real time mass spectrometry (DART-MS) in Allium chemistry. 2-propenesulfenic and 2-propenesulfinic acids, diallyl trisulfane S-oxide, and other reactive sulfur compounds from crushed garlic and other Alliums. Block E; Dane AJ; Thomas S; Cody RB J Agric Food Chem; 2010 Apr; 58(8):4617-25. PubMed ID: 20225897 [TBL] [Abstract][Full Text] [Related]
20. Organochlorine pesticide residues in leek (Allium porrum) crops grown on untreated soils from an agricultural environment. Gonzalez M; Miglioranza KS; Aizpún De Moreno JE; Moreno VJ J Agric Food Chem; 2003 Aug; 51(17):5024-9. PubMed ID: 12903964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]