These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24272308)

  • 1. Diversity of abundant mRNA sequences and patterns of protein synthesis in etiolated and greened pea seedlings.
    de Vries SC; Springer J; Wessels JG
    Planta; 1982 Nov; 156(2):129-35. PubMed ID: 24272308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence diversity of polysomal mRNAs in roots and shoots of etiolated and greened pea seedlings.
    de Vries SC; Springer J; Wessels JG
    Planta; 1983 Jun; 158(1):42-50. PubMed ID: 24264446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gibberellin-Induced Changes in the Populations of Translatable mRNAs and Accumulated Polypeptides in Dwarfs of Maize and Pea.
    Chory J; Voytas DF; Olszewski NE; Ausubel FM
    Plant Physiol; 1987 Jan; 83(1):15-23. PubMed ID: 16665192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunochemical detection with rabbit polyclonal and mouse monoclonal antibodies of different pools of phytochrome from etiolated and green Avena shoots.
    Shimazaki Y; Pratt LH
    Planta; 1985 Jun; 164(3):333-44. PubMed ID: 24249602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Phytochrome dependent variation of grouth and ion uptake of leaves and internodes of etiolated pea (pisum sativum) seedlings].
    Köhler D; Willert KV; Lüttge U
    Planta; 1968 Mar; 83(1):35-48. PubMed ID: 24519072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of glucose/mannose-specific isolectins in pea (Pisum sativum L.) seedlings.
    Díaz CL; Hosselet M; Logman GJ; van Driessche E; Lugtenberg BJ; Kijne JW
    Planta; 1990 Jul; 181(4):451-61. PubMed ID: 24196924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-induced increases in the glycine decarboxylase multienzyme complex from pea leaf mitochondria.
    Walker JL; Oliver DJ
    Arch Biochem Biophys; 1986 Aug; 248(2):626-38. PubMed ID: 3090936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Red Irradiation on Plastid Ribosomal RNA Synthesis in Dark-grown Pea Seedlings.
    Scott NS; Nair H; Smillie RM
    Plant Physiol; 1971 Mar; 47(3):385-8. PubMed ID: 16657627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light intensity regulates the accumulation of the major light-harvesting chlorophyll-protein in greening seedlings.
    Mathis JN; Burkey KO
    Plant Physiol; 1989 Jun; 90(2):560-6. PubMed ID: 16666808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of type I phytochrome (phyA) RNA1 and RNA2 in etiolated pea seedlings.
    Tomizawa K; Masatsuji E; Ishii K; Furuya M
    J Photochem Photobiol B; 1991 Nov; 11(2):163-72. PubMed ID: 1722817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental regulation of the PsbS gene expression in spinach seedlings: the role of phytochrome.
    Adamska I; Funk C; Renger G; Andersson B
    Plant Mol Biol; 1996 Jul; 31(4):793-802. PubMed ID: 8806410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pea ferredoxin I gene exhibits different light responses in pea and tobacco.
    Gallo-Meagher M; Sowinski DA; Thompson WF
    Plant Cell; 1992 Apr; 4(4):383-8. PubMed ID: 1379864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stable phytochrome pool regulates the expression of the phytochrome I gene in pea seedlings.
    Furuya M; Ito N; Tomizawa K; Schäfer E
    Planta; 1991 Jan; 183(2):218-21. PubMed ID: 24193623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochrome control of RNA levels in developing pea and mung-bean leaves.
    Thompson WF; Everett M; Polans NO; Jorgensen RA; Palmer JD
    Planta; 1983 Aug; 158(6):487-500. PubMed ID: 24264922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glutamine synthetase gene family of Arabidopsis thaliana: light-regulation and differential expression in leaves, roots and seeds.
    Peterman TK; Goodman HM
    Mol Gen Genet; 1991 Nov; 230(1-2):145-54. PubMed ID: 1684022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-controlled Stem Elongation in Pea Seedlings Grown under Varied Light Conditions.
    Elliott WM; Miller JH
    Plant Physiol; 1974 Feb; 53(2):279-83. PubMed ID: 16658691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional and post-transcriptional regulation of ribulose 1,5-bisphosphate carboxylase gene expression in light- and dark-grown amaranth cotyledons.
    Berry JO; Nikolau BJ; Carr JP; Klessig DF
    Mol Cell Biol; 1985 Sep; 5(9):2238-46. PubMed ID: 3837189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential regulation of the accumulation of the light-harvesting chlorophyll a/b complex and ribulose bisphosphate carboxylase/oxygenase in greening pea leaves.
    Bennett J; Jenkins GI; Hartley MR
    J Cell Biochem; 1984; 25(1):1-13. PubMed ID: 6470048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysiology of the Elongated Internode (ein) Mutant of Brassica rapa: ein Mutant Lacks a Detectable Phytochrome B-Like Polypeptide.
    Devlin PF; Rood SB; Somers DE; Quail PH; Whitelam GC
    Plant Physiol; 1992 Nov; 100(3):1442-7. PubMed ID: 16653143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The organisation and expression of the genes encoding the mitochondrial glycine decarboxylase complex and serine hydroxymethyltransferase in pea (Pisum sativum).
    Turner SR; Hellens R; Ireland R; Ellis N; Rawsthorne S
    Mol Gen Genet; 1993 Jan; 236(2-3):402-8. PubMed ID: 8094886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.