These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24272355)

  • 1. Escape mechanisms from antiangiogenic therapy: an immune cell's perspective.
    Rivera L; Pandika M; Bergers G
    Adv Exp Med Biol; 2014; 772():83-99. PubMed ID: 24272355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trimming the Vascular Tree in Tumors: Metabolic and Immune Adaptations.
    Allen E; Missiaen R; Bergers G
    Cold Spring Harb Symp Quant Biol; 2016; 81():21-29. PubMed ID: 28396525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Sabotaging Role of Myeloid Cells in Anti-Angiogenic Therapy: Coordination of Angiogenesis and Immune Suppression by Hypoxia.
    Li C; Liu T; Bazhin AV; Yang Y
    J Cell Physiol; 2017 Sep; 232(9):2312-2322. PubMed ID: 27935039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Angiogenesis and antiangiogenic cancer therapy].
    Pour L; Hájek R; Buchler T; Maisnar V; Smolej L
    Vnitr Lek; 2004 Dec; 50(12):930-8. PubMed ID: 15717808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms and therapeutic development of angiogenesis inhibitors.
    Cao Y
    Adv Cancer Res; 2008; 100():113-31. PubMed ID: 18620094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist.
    Alessi P; Leali D; Camozzi M; Cantelmo A; Albini A; Presta M
    Eur Cytokine Netw; 2009 Dec; 20(4):225-34. PubMed ID: 20167562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy.
    Tartour E; Pere H; Maillere B; Terme M; Merillon N; Taieb J; Sandoval F; Quintin-Colonna F; Lacerda K; Karadimou A; Badoual C; Tedgui A; Fridman WH; Oudard S
    Cancer Metastasis Rev; 2011 Mar; 30(1):83-95. PubMed ID: 21249423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications.
    De Bock K; Cauwenberghs S; Carmeliet P
    Curr Opin Genet Dev; 2011 Feb; 21(1):73-9. PubMed ID: 21106363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Angiogenesis and immune suppression: yin and yang of tumor progression?].
    Szala S
    Postepy Hig Med Dosw (Online); 2009 Dec; 63():598-612. PubMed ID: 20009124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia: a key regulator of angiogenesis in cancer.
    Liao D; Johnson RS
    Cancer Metastasis Rev; 2007 Jun; 26(2):281-90. PubMed ID: 17603752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies.
    Bottsford-Miller JN; Coleman RL; Sood AK
    J Clin Oncol; 2012 Nov; 30(32):4026-34. PubMed ID: 23008289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling escape from angiogenesis inhibitors.
    Sennino B; McDonald DM
    Nat Rev Cancer; 2012 Oct; 12(10):699-709. PubMed ID: 23001349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escape mechanisms after antiangiogenic treatment, or why are the tumors growing again?
    Hlushchuk R; Makanya AN; Djonov V
    Int J Dev Biol; 2011; 55(4-5):563-7. PubMed ID: 21858777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiogenesis as a therapeutic target.
    Ferrara N; Kerbel RS
    Nature; 2005 Dec; 438(7070):967-74. PubMed ID: 16355214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent vascular normalization as an alternative goal of anti-angiogenic cancer therapy.
    Sato Y
    Cancer Sci; 2011 Jul; 102(7):1253-6. PubMed ID: 21401807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells.
    Pinto MP; Sotomayor P; Carrasco-Avino G; Corvalan AH; Owen GI
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27608016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies.
    Shojaei F; Ferrara N
    Drug Resist Updat; 2008 Dec; 11(6):219-30. PubMed ID: 18948057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The great escape; the hallmarks of resistance to antiangiogenic therapy.
    van Beijnum JR; Nowak-Sliwinska P; Huijbers EJ; Thijssen VL; Griffioen AW
    Pharmacol Rev; 2015; 67(2):441-61. PubMed ID: 25769965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies.
    Pradeep CR; Sunila ES; Kuttan G
    Integr Cancer Ther; 2005 Dec; 4(4):315-21. PubMed ID: 16282508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth.
    Gacche RN; Meshram RJ
    Prog Biophys Mol Biol; 2013 Nov; 113(2):333-54. PubMed ID: 24139944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.