These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24272782)

  • 61. Synthesis of deoxythymidylate and the unusual deoxynucleotide in mature DNA of Bacillus subtilis bacteriophage SP10 occurs by postreplicational modification of 5-hydroxymethyldeoxyuridylate.
    Witmer H
    J Virol; 1981 Aug; 39(2):536-47. PubMed ID: 6792371
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid.
    Muñoz-Espín D; Holguera I; Ballesteros-Plaza D; Carballido-López R; Salas M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16548-53. PubMed ID: 20823229
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The interaction between Bacillus subtilis sigma-A (sigma A) factor and RNA polymerase with promoters.
    Chang BY; Shyu YT; Doi RH
    Biochimie; 1992; 74(7-8):601-12. PubMed ID: 1391041
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The missing link in phage lysis of gram-positive bacteria: gene 14 of Bacillus subtilis phage phi 29 encodes the functional homolog of lambda S protein.
    Steiner M; Lubitz W; Bläsi U
    J Bacteriol; 1993 Feb; 175(4):1038-42. PubMed ID: 8432697
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bacteriophage-enhanced sporulation: comparison of spore-converting bacteriophages PMB12 and SP10.
    Silver-Mysliwiec TH; Bramucci MG
    J Bacteriol; 1990 Apr; 172(4):1948-53. PubMed ID: 2108128
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage phi29.
    Meijer WJ; Castilla-Llorente V; Villar L; Murray H; Errington J; Salas M
    EMBO J; 2005 Oct; 24(20):3647-57. PubMed ID: 16193065
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Complete nucleotide sequence of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production.
    Umene K; Shiraishi A
    Virus Genes; 2013 Jun; 46(3):524-34. PubMed ID: 23315235
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370.
    Canchaya C; Desiere F; McShan WM; Ferretti JJ; Parkhill J; Brüssow H
    Virology; 2002 Oct; 302(2):245-58. PubMed ID: 12441069
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Anti-SOS effects induced in Bacillus subtilis by a phi 105 mutant prophage.
    Rubinstein CP; Coso OA; Ruzal S; Sanchez-Rivas C
    Arch Microbiol; 1993; 160(6):486-91. PubMed ID: 8297212
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Subspecies-specific distribution of intervening sequences in the Bacillus subtilis prophage ribonucleotide reductase genes.
    Stankovic S; Soldo B; Beric-Bjedov T; Knezevic-Vukcevic J; Simic D; Lazarevic V
    Syst Appl Microbiol; 2007 Jan; 30(1):8-15. PubMed ID: 16621400
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Analysis of Bacillus subtilis 168 prophage-associated lytic enzymes; identification and characterization of CWLA-related prophage proteins.
    Foster SJ
    J Gen Microbiol; 1993 Dec; 139(12):3177-84. PubMed ID: 7907356
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cloning and characterization of transcriptional promoters from Bacillus subtilis phage 2C.
    Daxhelet G; Gilot P; Hoet P
    Can J Microbiol; 1996 Sep; 42(9):919-26. PubMed ID: 8864214
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A degU-containing SP beta prophage complements superactivator mutations affecting the Bacillus subtilis degSU operon.
    Podvin L; Steinmetz M
    Res Microbiol; 1992; 143(6):559-67. PubMed ID: 1475517
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Roles of genes 38, 39, and 40 in shutoff of host biosyntheses during infection of Bacillus subtilis by bacteriophage SPO1.
    Stewart CR; Yip TK; Myles B; Laughlin L
    Virology; 2009 Sep; 392(2):271-4. PubMed ID: 19665746
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of the Holliday junction resolving enzyme encoded by the Bacillus subtilis bacteriophage SPP1.
    Zecchi L; Lo Piano A; Suzuki Y; Cañas C; Takeyasu K; Ayora S
    PLoS One; 2012; 7(10):e48440. PubMed ID: 23119018
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Dual promoters enhance heterologous enzyme production from bacterial phage based recombinant Bacillus subtilis].
    Liu G; Zhang Y; Xing M
    Sheng Wu Gong Cheng Xue Bao; 2006 Mar; 22(2):191-7. PubMed ID: 16607942
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of the bacteriophage phi29-encoded protein p16.7: a membrane protein involved in phage DNA replication.
    Meijer WJ; Serna-Rico A; Salas M
    Mol Microbiol; 2001 Feb; 39(3):731-46. PubMed ID: 11169113
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Bacillus subtilis phage phi 29 protein p16.7, involved in phi 29 DNA replication, is a membrane-localized single-stranded DNA-binding protein.
    Serna-Rico A; Salas M; Meijer WJ
    J Biol Chem; 2002 Feb; 277(8):6733-42. PubMed ID: 11741949
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Replication cycle of Bacillus subtilis hydroxymethyluracil-containing phages.
    Hoet PP; Coene MM; Cocito CG
    Annu Rev Microbiol; 1992; 46():95-116. PubMed ID: 1444272
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage.
    Piekarowicz A; Kłyz A; Majchrzak M; Adamczyk-Popławska M; Maugel TK; Stein DC
    BMC Microbiol; 2007 Jul; 7():66. PubMed ID: 17615066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.