These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 24272782)
81. Transcription analysis of Streptococcus thermophilus phages in the lysogenic state. Ventura M; Bruttin A; Canchaya C; Brüssow H Virology; 2002 Oct; 302(1):21-32. PubMed ID: 12429513 [TBL] [Abstract][Full Text] [Related]
82. Bacteriophage infection in rod-shaped gram-positive bacteria: evidence for a preferential polar route for phage SPP1 entry in Bacillus subtilis. Jakutytė L; Baptista C; São-José C; Daugelavičius R; Carballido-López R; Tavares P J Bacteriol; 2011 Sep; 193(18):4893-903. PubMed ID: 21705600 [TBL] [Abstract][Full Text] [Related]
83. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1. Jakutyte-Giraitiene L; Gasiunas G J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1183-8. PubMed ID: 27255973 [TBL] [Abstract][Full Text] [Related]
84. Bacteriophage B103: complete DNA sequence of its genome and relationship to other Bacillus phages. Pecenková T; Benes V; Paces J; Vlcek C; Paces V Gene; 1997 Oct; 199(1-2):157-63. PubMed ID: 9358052 [TBL] [Abstract][Full Text] [Related]
85. Genetic evidence for the involvement of the S-layer protein gene sap and the sporulation genes spo0A, spo0B, and spo0F in Phage AP50c infection of Bacillus anthracis. Plaut RD; Beaber JW; Zemansky J; Kaur AP; George M; Biswas B; Henry M; Bishop-Lilly KA; Mokashi V; Hannah RM; Pope RK; Read TD; Stibitz S; Calendar R; Sozhamannan S J Bacteriol; 2014 Mar; 196(6):1143-54. PubMed ID: 24363347 [TBL] [Abstract][Full Text] [Related]
86. Genomic Sequencing of High-Efficiency Transducing Streptococcal Bacteriophage A25: Consequences of Escape from Lysogeny. McCullor K; Postoak B; Rahman M; King C; McShan WM J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30224437 [TBL] [Abstract][Full Text] [Related]
87. Glycoside hydrolase family 32 is present in Bacillus subtilis phages. Maaroufi H; Levesque RC Virol J; 2015 Oct; 12():157. PubMed ID: 26438422 [TBL] [Abstract][Full Text] [Related]
88. Characterization of poly-gamma-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-gamma-glutamate. Kimura K; Itoh Y Appl Environ Microbiol; 2003 May; 69(5):2491-7. PubMed ID: 12732513 [TBL] [Abstract][Full Text] [Related]
89. Against the mainstream: the membrane-associated type I toxin BsrG from Bacillus subtilis interferes with cell envelope biosynthesis without increasing membrane permeability. Jahn N; Brantl S; Strahl H Mol Microbiol; 2015 Nov; 98(4):651-66. PubMed ID: 26234942 [TBL] [Abstract][Full Text] [Related]
90. Interaction between bacteriophage PBS1 and clay minerals and transduction of Bacillus subtilis by clay-phage complexes. Vettori C; Stotzky G; Yoder M; Gallori E Environ Microbiol; 1999 Aug; 1(4):347-55. PubMed ID: 11207752 [TBL] [Abstract][Full Text] [Related]
91. Roles of genes 44, 50, and 51 in regulating gene expression and host takeover during infection of Bacillus subtilis by bacteriophage SPO1. Sampath A; Stewart CR J Bacteriol; 2004 Mar; 186(6):1785-92. PubMed ID: 14996809 [TBL] [Abstract][Full Text] [Related]
92. Selective protection of 5' ... GGCC ... 3' and 5' ... GCNGC ... 3' sequences by the hypermodified oxopyrimidine in Bacillus subtilis bacteriophage SP10 DNA. Wiatr CL; Witmer HJ J Virol; 1984 Oct; 52(1):47-54. PubMed ID: 6090709 [TBL] [Abstract][Full Text] [Related]
93. The Bacillus subtilis spoIIG operon encodes both sigma E and a gene necessary for sigma E activation. Jonas RM; Weaver EA; Kenney TJ; Moran CP; Haldenwang WG J Bacteriol; 1988 Feb; 170(2):507-11. PubMed ID: 2448286 [TBL] [Abstract][Full Text] [Related]
94. Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. São-José C; Baptista C; Santos MA J Bacteriol; 2004 Dec; 186(24):8337-46. PubMed ID: 15576783 [TBL] [Abstract][Full Text] [Related]
95. Single-peptide DNA-dependent RNA polymerase homologous to multi-subunit RNA polymerase. Forrest D; James K; Yuzenkova Y; Zenkin N Nat Commun; 2017 Jun; 8():15774. PubMed ID: 28585540 [TBL] [Abstract][Full Text] [Related]
96. Cloning of the thymidylate synthetase gene (thyPIG 3) from the Bacillus subtilis temperate phage IG 3. Santos I; de Lencastre H Arch Virol; 1992; 127(1-4):65-74. PubMed ID: 1456899 [TBL] [Abstract][Full Text] [Related]
97. Restriction and modification in Bacillus subtilis 168. Regulation of hsrM(nonB) expression in spoOA mutants and effects on permissiveness for phi15 and phi105 phages. Fucík V; Grünnerová H; Zadrazil S Mol Gen Genet; 1982; 186(1):118-21. PubMed ID: 6810062 [TBL] [Abstract][Full Text] [Related]
98. Functional linkages between replication proteins of genes 1, 3 and 5 of Bacillus subtilis phage φ29. Tone T; Takeuchi A; Makino O Genes Genet Syst; 2012; 87(6):347-56. PubMed ID: 23558641 [TBL] [Abstract][Full Text] [Related]
99. Mechanism of bacterial gene rearrangement: SprA-catalyzed precise DNA recombination and its directionality control by SprB ensure the gene rearrangement and stable expression of spsM during sporulation in Bacillus subtilis. Abe K; Takamatsu T; Sato T Nucleic Acids Res; 2017 Jun; 45(11):6669-6683. PubMed ID: 28535266 [TBL] [Abstract][Full Text] [Related]
100. Interaction of a putative transcriptional regulatory protein and the thermo-inducible cts-52 mutant repressor in the Bacillus subtilis phage phi105 genome. Chan AY; Lim BL J Mol Biol; 2003 Oct; 333(1):21-31. PubMed ID: 14516740 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]