These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 2427329)

  • 1. Midlatency auditory evoked responses: differential effects of sleep in the human.
    Erwin R; Buchwald JS
    Electroencephalogr Clin Neurophysiol; 1986 Sep; 65(5):383-92. PubMed ID: 2427329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Midlatency auditory evoked responses: differential effects of sleep in the cat.
    Chen BM; Buchwald JS
    Electroencephalogr Clin Neurophysiol; 1986 Sep; 65(5):373-82. PubMed ID: 2427328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Evolution of visual evoked responses during various states of vigilance in Papio papio (author's transl)].
    Vuillon-Cacciuttolo G; Balzamo E; Naquet R
    Brain Res; 1975 Dec; 100(3):509-21. PubMed ID: 172195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Midlatency auditory evoked responses: differential recovery cycle characteristics.
    Erwin RJ; Buchwald JS
    Electroencephalogr Clin Neurophysiol; 1986 Nov; 64(5):417-23. PubMed ID: 2428592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laminar analysis of intracortical auditory evoked potentials during the wakefulness-sleep cycle in the cat.
    Molnár M; Karmos G; Csépe V
    Int J Psychophysiol; 1986 Jan; 3(3):171-82. PubMed ID: 3949593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Midlatency auditory-evoked responses: effect of scopolamine in the cat and implications for brain stem cholinergic mechanisms.
    Dickerson LW; Buchwald JS
    Exp Neurol; 1991 May; 112(2):229-39. PubMed ID: 2037032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Midlatency auditory evoked responses: differential effects of a cholinergic agonist and antagonist.
    Buchwald JS; Rubinstein EH; Schwafel J; Strandburg RJ
    Electroencephalogr Clin Neurophysiol; 1991; 80(4):303-9. PubMed ID: 1713841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A middle-latency auditory-evoked potential in the rat.
    Miyazato H; Skinner RD; Reese NB; Boop FA; Garcia-Rill E
    Brain Res Bull; 1995; 37(3):247-55. PubMed ID: 7627567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wakefulness-sleep modulation of the surface and depth auditory evoked potentials in man.
    Velasco M; Velasco F; Cepeda C; Almanza X; Velasco AL
    Int J Neurosci; 1989 Oct; 48(3-4):333-46. PubMed ID: 2583950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of state on sensory gating: comparison of waking, REM and non-REM sleep.
    Kisley MA; Olincy A; Freedman R
    Clin Neurophysiol; 2001 Jul; 112(7):1154-65. PubMed ID: 11516727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the auditory middle latency responses during all-night sleep recording.
    Jones LA; Baxter RJ
    Br J Audiol; 1988 Nov; 22(4):279-85. PubMed ID: 3242718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Midlatency auditory evoked responses: P1 abnormalities in adult autistic subjects.
    Buchwald JS; Erwin R; Van Lancker D; Guthrie D; Schwafel J; Tanguay P
    Electroencephalogr Clin Neurophysiol; 1992; 84(2):164-71. PubMed ID: 1372231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-related potentials (ERPs) to deviant auditory stimuli during sleep and waking.
    Nordby H; Hugdahl K; Stickgold R; Bronnick KS; Hobson JA
    Neuroreport; 1996 Apr; 7(5):1082-6. PubMed ID: 8804056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory evoked potentials from auditory cortex, medial geniculate nucleus, and inferior colliculus during sleep-wake states and spike-wave discharges in the WAG/Rij rat.
    Meeren HK; van Cappellen van Walsum AM; van Luijtelaar EL; Coenen AM
    Brain Res; 2001 Apr; 898(2):321-31. PubMed ID: 11306019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infant Cortical Auditory Evoked Potentials to Lateralized Noise Shifts Produced by Changes in Interaural Time Difference.
    Small SA; Ishida IM; Stapells DR
    Ear Hear; 2017; 38(1):94-102. PubMed ID: 27505221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-dependent changes in cortical gain control as measured by auditory evoked responses to varying intensity stimuli.
    Phillips DJ; Schei JL; Meighan PC; Rector DM
    Sleep; 2011 Nov; 34(11):1527-37. PubMed ID: 22043124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sleep on middle latency response (MLR) in infants.
    Collet L; Duclaux R; Challamel MJ; Revol M
    Brain Dev; 1988; 10(3):169-73. PubMed ID: 3407853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory thalamus neurons during sleep: changes in frequency selectivity, threshold, and receptive field size.
    Edeline JM; Manunta Y; Hennevin E
    J Neurophysiol; 2000 Aug; 84(2):934-52. PubMed ID: 10938318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing functioning of the prefrontal cortical subregions with auditory evoked potentials in sleep-wake cycle.
    Tian S; Hu B; Li P; Zhao Z; Ouyang X; Zhou S; Ma Y
    Neurosci Lett; 2006 Jan; 393(1):7-11. PubMed ID: 16213657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acquisition and analysis of high rate deconvolved auditory evoked potentials during sleep.
    Millan J; Ozdamar O; Bohórquez J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4987-90. PubMed ID: 17946667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.