BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24273469)

  • 1. Effect of Cytochalasin B, Lantrunculin B, Colchicine, Cycloheximid, Dimethyl Sulfoxide and Ion Channel Inhibitors on Biospeckle Activity in Apple Tissue.
    Kurenda A; Pieczywek PM; Adamiak A; Zdunek A
    Food Biophys; 2013; 8(4):290-296. PubMed ID: 24273469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method.
    Skic A; Szymańska-Chargot M; Kruk B; Chylińska M; Pieczywek PM; Kurenda A; Zdunek A; Rutkowski KP
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27171093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation of biospeckle activity with quality attributes of apples.
    Zdunek A; Cybulska J
    Sensors (Basel); 2011; 11(6):6317-27. PubMed ID: 22163957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Insight into Biospeckle Activity in Apple Tissues.
    Abou Nader C; Tualle JM; Tinet E; Ettori D
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the biospeckle method for monitoring bull's eye rot development and quality changes of apples subjected to various storage methods-preliminary studies.
    Adamiak A; Zdunek A; Kurenda A; Rutkowski K
    Sensors (Basel); 2012; 12(3):3215-27. PubMed ID: 22737003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeletal regulation of Caco-2 intestinal monolayer paracellular permeability.
    Ma TY; Hollander D; Tran LT; Nguyen D; Hoa N; Bhalla D
    J Cell Physiol; 1995 Sep; 164(3):533-45. PubMed ID: 7650061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of laser biospeckle method for speedy in vivo evaluation of plant-sound interactions with arugula.
    Rajagopalan UM; Wakumoto R; Endo D; Hirai M; Kono T; Gonome H; Kadono H; Yamada J
    PLoS One; 2021; 16(10):e0258973. PubMed ID: 34710145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CCD-Based Skinning Injury Recognition on Potato Tubers (Solanum tuberosum L.): A Comparison between Visible and Biospeckle Imaging.
    Gao Y; Geng J; Rao X; Ying Y
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postharvest Monitoring of Tomato Ripening Using the Dynamic Laser Speckle.
    Pieczywek PM; Nowacka M; Dadan M; Wiktor A; Rybak K; Witrowa-Rajchert D; Zdunek A
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29617343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of [3H]ctyochalasin B and [3H]colchicine to isolated liver plasma membranes.
    Riordan JR; Alon N
    Biochim Biophys Acta; 1977 Feb; 464(3):547-61. PubMed ID: 13829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of microfilaments and microtubules in taurocholate uptake by isolated rat liver cells.
    Reichen J; Berman MD; Berk PD
    Biochim Biophys Acta; 1981 Apr; 643(1):126-33. PubMed ID: 7195284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous, high-resolution biospeckle imaging reveals a discrete zone of activity at the root apex that responds to contact with obstacles.
    Ribeiro KM; Barreto B; Pasqual M; White PJ; Braga RA; Dupuy LX
    Ann Bot; 2014 Feb; 113(3):555-63. PubMed ID: 24284818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biospeckle-characterization of hairy root cultures using laser speckle photometry.
    Schott C; Steingroewer J; Bley T; Cikalova U; Bendjus B
    Eng Life Sci; 2020 Jul; 20(7):287-295. PubMed ID: 32647507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanophore stimulating hormone (MSH) release: inhibition by cytochalasin B and "stimulation" by dimethyl sulfoxide.
    Bower SA; Hadley ME
    Endocrinology; 1975 Feb; 96(2):431-9. PubMed ID: 1078655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-dependent regulation of epithelial sodium channel densities in frog skin; a role for the cytoskeleton.
    Els WJ; Chou KY
    J Physiol; 1993 Mar; 462():447-64. PubMed ID: 8392570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. II. Inhibition of antimicrotubular agents.
    Seybold J; Bieger W; Kern HF
    Virchows Arch A Pathol Anat Histol; 1975 Nov; 368(4):309-27. PubMed ID: 813370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cytoskeleton and rat granulosa cell steroidogenesis: possible involvement of microtubules and microfilaments.
    Carnegie JA; Tsang BK
    Biol Reprod; 1988 Feb; 38(1):100-8. PubMed ID: 3365461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actin filament disruption inhibits L-type Ca(2+) channel current in cultured vascular smooth muscle cells.
    Nakamura M; Sunagawa M; Kosugi T; Sperelakis N
    Am J Physiol Cell Physiol; 2000 Aug; 279(2):C480-7. PubMed ID: 10913014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cytochalasin D and colchicine on the uptake, translocation, and biliary secretion of horseradish peroxidase and [14C]sodium taurocholate in the rat.
    Kacich RL; Renston RH; Jones AL
    Gastroenterology; 1983 Aug; 85(2):385-94. PubMed ID: 6683208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.