These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24273634)

  • 1. Imaging Electric Fields in SERS and TERS Using the Vibrational Stark Effect.
    Marr JM; Schultz ZD
    J Phys Chem Lett; 2013 Oct; 4(19):. PubMed ID: 24273634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental correlation of electric fields and Raman signals in SERS and TERS.
    Schultz ZD; Wang H; Kwasnieski DT; Marr JM
    Proc SPIE Int Soc Opt Eng; 2015 Aug; 9554():. PubMed ID: 26412927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkyl-Nitrile Adlayers as Probes of Plasmonically Induced Electric Fields.
    Kwasnieski DT; Wang H; Schultz ZD
    Chem Sci; 2015 Aug; 6(8):4484-4494. PubMed ID: 26213606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chemical origin of enhanced signals from tip-enhanced Raman detection of functionalized nanoparticles.
    Wang H; Schultz ZD
    Analyst; 2013 Jun; 138(11):3150-7. PubMed ID: 23423552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERS detection of the vibrational Stark effect from nitrile-terminated SAMs to probe electric fields in the diffuse double-layer.
    Oklejas V; Sjostrom C; Harris JM
    J Am Chem Soc; 2002 Mar; 124(11):2408-9. PubMed ID: 11890768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring Local Electric Fields at Electrode Surfaces Using Surface Enhanced Raman Scattering-Based Stark-Shift Spectroscopy during Hydrogen Evolution Reactions.
    Shi H; Cai Z; Patrow J; Zhao B; Wang Y; Wang Y; Benderskii A; Dawlaty J; Cronin SB
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33678-33683. PubMed ID: 30187745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing Electric Fields at Au(111) Step Edges via Tip-Enhanced Raman Scattering.
    Bhattarai A; Joly AG; Hess WP; El-Khoury PZ
    Nano Lett; 2017 Nov; 17(11):7131-7137. PubMed ID: 28972773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules.
    Pettinger B; Schambach P; Villagómez CJ; Scott N
    Annu Rev Phys Chem; 2012; 63():379-99. PubMed ID: 22263910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Local Electric Fields and Local Charge Densities at Electrode Surfaces Using Graphene-Enhanced Raman Spectroscopy (GERS)-Based Stark-Shifts.
    Shi H; Zhao B; Ma J; Bronson MJ; Cai Z; Chen J; Wang Y; Cronin M; Jensen L; Cronin SB
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36252-36258. PubMed ID: 31498591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential-dependent surface-enhanced Raman scattering from adsorbed thiocyanate for characterizing silver surfaces with improved reproducibility.
    Oklejas V; Harris JM
    Appl Spectrosc; 2004 Aug; 58(8):945-51. PubMed ID: 18070387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy.
    Tian ZQ; Ren B; Li JF; Yang ZL
    Chem Commun (Camb); 2007 Sep; (34):3514-34. PubMed ID: 18080535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface- and Tip-Enhanced Raman Scattering by CdSe Nanocrystals on Plasmonic Substrates.
    Milekhin IA; Milekhin AG; Zahn DRT
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude.
    Zhang W; Cui X; Yeo BS; Schmid T; Hafner C; Zenobi R
    Nano Lett; 2007 May; 7(5):1401-5. PubMed ID: 17447824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zrimsek AB; Chiang N; Mattei M; Zaleski S; McAnally MO; Chapman CT; Henry AI; Schatz GC; Van Duyne RP
    Chem Rev; 2017 Jun; 117(11):7583-7613. PubMed ID: 28610424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of electron tunneling across plasmonic nanoparticle-film junctions using nitrile vibrations.
    Wang H; Yao K; Parkhill JA; Schultz ZD
    Phys Chem Chem Phys; 2017 Feb; 19(8):5786-5796. PubMed ID: 28180214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gap-Mode Tip-Enhanced Raman Scattering on Au Nanoplates of Varied Thickness.
    Wang R; He Z; Sokolov AV; Kurouski D
    J Phys Chem Lett; 2020 May; 11(10):3815-3820. PubMed ID: 32340446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bias-Dependent Chemical Enhancement and Nonclassical Stark Effect in Tip-Enhanced Raman Spectromicroscopy of CO-Terminated Ag Tips.
    Gieseking RLM; Lee J; Tallarida N; Apkarian VA; Schatz GC
    J Phys Chem Lett; 2018 Jun; 9(11):3074-3080. PubMed ID: 29782171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tip-Enhanced Raman Spectromicroscopy on the Angstrom Scale: Bare and CO-Terminated Ag Tips.
    Tallarida N; Lee J; Apkarian VA
    ACS Nano; 2017 Nov; 11(11):11393-11401. PubMed ID: 28980800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonant Raman scattering on graphene: SERS and gap-mode TERS.
    Kurus NN; Kalinin V; Nebogatikova NA; Milekhin IA; Antonova IV; Rodyakina EE; Milekhin AG; Latyshev AV; Zahn DRT
    RSC Adv; 2024 Jan; 14(6):3667-3674. PubMed ID: 38268550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tip-Enhanced Raman Scattering from Nanopatterned Graphene and Graphene Oxide.
    Bhattarai A; Krayev A; Temiryazev A; Evplov D; Crampton KT; Hess WP; El-Khoury PZ
    Nano Lett; 2018 Jun; 18(6):4029-4033. PubMed ID: 29791800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.