These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 24274095)

  • 1. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review.
    Jeyanathan J; Martin C; Morgavi DP
    Animal; 2014 Feb; 8(2):250-61. PubMed ID: 24274095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial ecosystem and methanogenesis in ruminants.
    Morgavi DP; Forano E; Martin C; Newbold CJ
    Animal; 2010 Jul; 4(7):1024-36. PubMed ID: 22444607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options.
    Hristov AN; Oh J; Firkins JL; Dijkstra J; Kebreab E; Waghorn G; Makkar HP; Adesogan AT; Yang W; Lee C; Gerber PJ; Henderson B; Tricarico JM
    J Anim Sci; 2013 Nov; 91(11):5045-69. PubMed ID: 24045497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen.
    Patra AK; Saxena J
    Phytochemistry; 2010 Aug; 71(11-12):1198-222. PubMed ID: 20570294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation.
    Beauchemin KA; Ungerfeld EM; Eckard RJ; Wang M
    Animal; 2020 Mar; 14(S1):s2-s16. PubMed ID: 32024560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals.
    Tseten T; Sanjorjo RA; Kwon M; Kim SW
    J Microbiol Biotechnol; 2022 Mar; 32(3):269-277. PubMed ID: 35283433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.
    McAllister TA; Meale SJ; Valle E; Guan LL; Zhou M; Kelly WJ; Henderson G; Attwood GT; Janssen PH
    J Anim Sci; 2015 Apr; 93(4):1431-49. PubMed ID: 26020166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Could propionate formation be used to reduce enteric methane emission in ruminants?
    Wang K; Xiong B; Zhao X
    Sci Total Environ; 2023 Jan; 855():158867. PubMed ID: 36122712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rumen microbial responses to supplemental nitrate. II. Potential interactions with live yeast culture on the prokaryotic community and methanogenesis in continuous culture.
    Welty CM; Wenner BA; Wagner BK; Roman-Garcia Y; Plank JE; Meller RA; Gehman AM; Firkins JL
    J Dairy Sci; 2019 Mar; 102(3):2217-2231. PubMed ID: 30639000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane mitigation in ruminants: from microbe to the farm scale.
    Martin C; Morgavi DP; Doreau M
    Animal; 2010 Mar; 4(3):351-65. PubMed ID: 22443940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation.
    Lan W; Yang C
    Sci Total Environ; 2019 Mar; 654():1270-1283. PubMed ID: 30841400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening of bacterial direct-fed microbials for their antimethanogenic potential in vitro and assessment of their effect on ruminal fermentation and microbial profiles in sheep.
    Jeyanathan J; Martin C; Morgavi DP
    J Anim Sci; 2016 Feb; 94(2):739-50. PubMed ID: 27065144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies.
    Leahy SC; Kelly WJ; Ronimus RS; Wedlock N; Altermann E; Attwood GT
    Animal; 2013 Jun; 7 Suppl 2():235-43. PubMed ID: 23739466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows.
    Pitta D; Indugu N; Narayan K; Hennessy M
    J Dairy Sci; 2022 Oct; 105(10):8569-8585. PubMed ID: 35346473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A meta-analysis of fumarate effects on methane production in ruminal batch cultures.
    Ungerfeld EM; Kohn RA; Wallace RJ; Newbold CJ
    J Anim Sci; 2007 Oct; 85(10):2556-63. PubMed ID: 17565060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro.
    Newbold CJ; López S; Nelson N; Ouda JO; Wallace RJ; Moss AR
    Br J Nutr; 2005 Jul; 94(1):27-35. PubMed ID: 16115329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions.
    Belanche A; de la Fuente G; Newbold CJ
    FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New aspects and strategies for methane mitigation from ruminants.
    Kumar S; Choudhury PK; Carro MD; Griffith GW; Dagar SS; Puniya M; Calabro S; Ravella SR; Dhewa T; Upadhyay RC; Sirohi SK; Kundu SS; Wanapat M; Puniya AK
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):31-44. PubMed ID: 24247990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of fenugreek in ruminant feed: implications for methane emissions and productivity.
    Zeng X; Chen Y; Li W; Liu S
    PeerJ; 2024; 12():e16842. PubMed ID: 38313019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review: Methanogens and methane production in the digestive systems of nonruminant farm animals.
    Misiukiewicz A; Gao M; Filipiak W; Cieslak A; Patra AK; Szumacher-Strabel M
    Animal; 2021 Jan; 15(1):100060. PubMed ID: 33516013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.