These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24274109)

  • 1. Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications.
    Wang Y; Veluvolu KC; Lee M
    J Neuroeng Rehabil; 2013 Nov; 10():109. PubMed ID: 24274109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial filter and feature selection optimization based on EA for multi-channel EEG.
    Wang Y; Mohanarangam K; Mallipeddi R; Veluvolu KC
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2311-4. PubMed ID: 26736755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive estimation of EEG for subject-specific reactive band identification and improved ERD detection.
    Wang Y; Veluvolu KC; Cho JH; Defoort M
    Neurosci Lett; 2012 Oct; 528(2):137-42. PubMed ID: 22995178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner.
    Wang Y; Veluvolu KC
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28613239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online detection of amplitude modulation of motor-related EEG desynchronization using a lock-in amplifier: Comparison with a fast Fourier transform, a continuous wavelet transform, and an autoregressive algorithm.
    Kato K; Takahashi K; Mizuguchi N; Ushiba J
    J Neurosci Methods; 2018 Jan; 293():289-298. PubMed ID: 29055718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probability mapping based artifact detection and removal from single-channel EEG signals for brain-computer interface applications.
    Islam MK; Ghorbanzadeh P; Rastegarnia A
    J Neurosci Methods; 2021 Aug; 360():109249. PubMed ID: 34139268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification.
    Zhang S; Zhu Z; Zhang B; Feng B; Yu T; Li Z
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
    Chaudhary S; Taran S; Bajaj V; Siuly S
    Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CWT Based Transfer Learning for Motor Imagery Classification for Brain computer Interfaces.
    Kant P; Laskar SH; Hazarika J; Mahamune R
    J Neurosci Methods; 2020 Nov; 345():108886. PubMed ID: 32730917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interface technologies: from signal to action.
    Ortiz-Rosario A; Adeli H
    Rev Neurosci; 2013; 24(5):537-52. PubMed ID: 24077619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic artefact removal in a self-paced hybrid brain- computer interface system.
    Yong X; Fatourechi M; Ward RK; Birch GE
    J Neuroeng Rehabil; 2012 Jul; 9():50. PubMed ID: 22838499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-weight single trial EEG signal processing algorithms: computational profiling for low power design.
    Ahmadi A; Jafari R; Hart J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4426-30. PubMed ID: 22255321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor imagery based brain computer interface using transform domain features.
    Elbaz AM; Ahmed AT; Mohamed AM; Oransa MA; Sayed KS; Eldeib AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6421-6424. PubMed ID: 28269716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature Space Reduction for Single Trial EEG Classification based on Wavelet Decomposition.
    Shahtalebi S; Mohammadi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7161-7164. PubMed ID: 31947486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals.
    Malan NS; Sharma S
    Comput Biol Med; 2019 Apr; 107():118-126. PubMed ID: 30802693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self produced mother wavelet feature extraction method for motor imagery brain-computer interface.
    Yeh WL; Huang YC; Chiou JH; Duann JR; Chiou JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4302-5. PubMed ID: 24110684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.