These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 24274189)

  • 1. Effect of noise correlation on noise-induced oscillation frequency in the photosensitive Belousov-Zhabotinsky reaction in a continuous stirred tank reactor.
    Simakov DS; Pérez-Mercader J
    J Phys Chem A; 2013 Dec; 117(51):13999-4005. PubMed ID: 24274189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deterministic chaos in the Belousov-Zhabotinsky reaction: Experiments and simulations.
    Zhang D; Gyorgyi L; Peltier WR
    Chaos; 1993 Oct; 3(4):723-745. PubMed ID: 12780076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-distributed oscillations: stationary chemical waves in a reacting flow.
    Kaern M; Menzinger M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):R3471-4. PubMed ID: 11970260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of periodic swelling and collapse of polymer chain induced by the Belousov-Zhabotinsky reaction.
    Hara Y; Mayama H; Yamaguchi Y; Takenaka Y; Fukuda R
    J Phys Chem B; 2013 Nov; 117(46):14351-7. PubMed ID: 24147635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency oscillations in the Belousov-Zhabotinsky reaction.
    Bánsági T; Leda M; Toiya M; Zhabotinsky AM; Epstein IR
    J Phys Chem A; 2009 May; 113(19):5644-8. PubMed ID: 19374364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of volume fraction results in different kinetic effects in Belousov-Zhabotinsky reaction confined in AOT-reverse microemulsion.
    Álvarez EV; Carballido-Landeira J; Guiu-Souto J; Taboada P; Muñuzuri AP
    J Chem Phys; 2011 Mar; 134(9):094512. PubMed ID: 21384990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Period doubling in a periodically forced Belousov-Zhabotinsky reaction.
    Marts B; Simpson DJ; Hagberg A; Lin AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026213. PubMed ID: 17930127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise-induced order in the chaos of the Belousov-Zhabotinsky reaction.
    Yoshimoto M; Shirahama H; Kurosawa S
    J Chem Phys; 2008 Jul; 129(1):014508. PubMed ID: 18624484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental, numerical, and mechanistic analysis of the nonmonotonic relationship between oscillatory frequency and photointensity for the photosensitive Belousov-Zhabotinsky oscillator.
    Ren L; Fan B; Gao Q; Zhao Y; Luo H; Xia Y; Lu X; Epstein IR
    Chaos; 2015 Jun; 25(6):064607. PubMed ID: 26117132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear behavior and fluctuation-induced dynamics in the photosensitive Belousov-Zhabotinsky reaction.
    Voorsluijs V; Kevrekidis IG; De Decker Y
    Phys Chem Chem Phys; 2017 Aug; 19(33):22528-22537. PubMed ID: 28809962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of initial substrate concentration of the Belousov-Zhabotinsky reaction on self-oscillation for microgel system.
    Suzuki D; Yoshida R
    J Phys Chem B; 2008 Oct; 112(40):12618-24. PubMed ID: 18785705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoexcited chemical wave in the ruthenium-catalyzed Belousov-Zhabotinsky reaction.
    Nakata S; Matsushita M; Sato T; Suematsu NJ; Kitahata H; Amemiya T; Mori Y
    J Phys Chem A; 2011 Jul; 115(26):7406-12. PubMed ID: 21563834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observations of the effect of anionic, cationic, neutral, and zwitterionic surfactants on the Belousov-Zhabotinsky reaction.
    Paul A
    J Phys Chem B; 2005 May; 109(19):9639-44. PubMed ID: 16852160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherence resonance in a chemical excitable system driven by coloured noise.
    Beato V; Sendiña-Nadal I; Gerdes I; Engel H
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):381-95. PubMed ID: 17673411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental observation of coherence resonance in an excitable chemical reaction system.
    Miyakawa K; Isikawa H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046204. PubMed ID: 12443296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging of flow-distributed oscillations.
    Britton MM; Sederman AJ; Taylor AF; Scott SK; Gladden LF
    J Phys Chem A; 2005 Sep; 109(37):8306-13. PubMed ID: 16834220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low frequency temperature forcing of chemical oscillations.
    Novak J; Thompson BW; Wilson MC; Taylor AF; Britton MM
    Phys Chem Chem Phys; 2011 Jul; 13(26):12321-7. PubMed ID: 21643566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition between global feedback and diffusion in coupled Belousov-Zhabotinsky oscillators.
    Ohno K; Ogawa T; Suematsu NJ
    Phys Rev E; 2019 Jan; 99(1-1):012208. PubMed ID: 30780237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise induced oscillations and coherence resonance in a generic model of the nonisothermal chemical oscillator.
    Simakov DS; Pérez-Mercader J
    Sci Rep; 2013; 3():2404. PubMed ID: 23929212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise-induced complex oscillatory dynamics in the Zeldovich-Semenov model of a continuous stirred tank reactor.
    Ryashko L
    Chaos; 2021 Jan; 31(1):013105. PubMed ID: 33754765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.