These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 24274300)
1. Non-targeted and targeted analysis of wild toxic and edible mushrooms using gas chromatography-ion trap mass spectrometry. Carvalho LM; Carvalho F; de Lourdes Bastos M; Baptista P; Moreira N; Monforte AR; da Silva Ferreira AC; de Pinho PG Talanta; 2014 Jan; 118():292-303. PubMed ID: 24274300 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Volatile Profiles of Six Popular Edible Mushrooms Using Headspace-Solid-Phase Microextraction Coupled with Gas Chromatography Combined with Chemometric Analysis. Jung MY; Lee DE; Cheng HY; Chung IM; Kim SH; Han JG; Kong WS J Food Sci; 2019 Mar; 84(3):421-429. PubMed ID: 30775790 [TBL] [Abstract][Full Text] [Related]
3. Odor-contributing volatile compounds of wild edible Nordic mushrooms analyzed with HS-SPME-GC-MS and HS-SPME-GC-O/FID. Aisala H; Sola J; Hopia A; Linderborg KM; Sandell M Food Chem; 2019 Jun; 283():566-578. PubMed ID: 30722913 [TBL] [Abstract][Full Text] [Related]
4. Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms. de Pinho PG; Ribeiro B; Gonçalves RF; Baptista P; Valentão P; Seabra RM; Andrade PB J Agric Food Chem; 2008 Mar; 56(5):1704-12. PubMed ID: 18266318 [TBL] [Abstract][Full Text] [Related]
5. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Kalogeropoulos N; Yanni AE; Koutrotsios G; Aloupi M Food Chem Toxicol; 2013 May; 55():378-85. PubMed ID: 23354393 [TBL] [Abstract][Full Text] [Related]
6. An unattended HS-SPME-GC-MS/MS combined with a novel sample preparation strategy for the reliable quantitation of C8 volatiles in mushrooms: A sample preparation strategy to fully control the volatile emission. Jung MY; Lee DE; Baek SH; Lim SM; Chung IM; Han JG; Kim SH Food Chem; 2021 Jun; 347():128998. PubMed ID: 33453580 [TBL] [Abstract][Full Text] [Related]
7. Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. Aprea E; Gika H; Carlin S; Theodoridis G; Vrhovsek U; Mattivi F J Chromatogr A; 2011 Jul; 1218(28):4517-24. PubMed ID: 21641602 [TBL] [Abstract][Full Text] [Related]
8. Automated pipeline for classifying Aroclors in soil by gas chromatography/mass spectrometry using modulo compressed two-way data objects. Zhang M; Harrington Pde B Talanta; 2013 Dec; 117():483-91. PubMed ID: 24209371 [TBL] [Abstract][Full Text] [Related]
9. Untargeted and Targeted Discrimination of Honey Collected by Wang X; Rogers KM; Li Y; Yang S; Chen L; Zhou J J Agric Food Chem; 2019 Oct; 67(43):12144-12152. PubMed ID: 31587558 [TBL] [Abstract][Full Text] [Related]
10. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. Ferreira L; Perestrelo R; Caldeira M; Câmara JS J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016 [TBL] [Abstract][Full Text] [Related]
11. Triacylglycerol profile as a chemical fingerprint of mushroom species: evaluation by principal component and linear discriminant analyses. Barreira JC; Ferreira IC; Oliveira MB J Agric Food Chem; 2012 Oct; 60(42):10592-9. PubMed ID: 23030704 [TBL] [Abstract][Full Text] [Related]
12. Establishment and application of a metabolomics workflow for identification and profiling of volatiles from leaves of Vitis vinifera by HS-SPME-GC-MS. Weingart G; Kluger B; Forneck A; Krska R; Schuhmacher R Phytochem Anal; 2012; 23(4):345-58. PubMed ID: 22009551 [TBL] [Abstract][Full Text] [Related]
13. Profiling allergic asthma volatile metabolic patterns using a headspace-solid phase microextraction/gas chromatography based methodology. Caldeira M; Barros AS; Bilelo MJ; Parada A; Câmara JS; Rocha SM J Chromatogr A; 2011 Jun; 1218(24):3771-80. PubMed ID: 21546028 [TBL] [Abstract][Full Text] [Related]
14. Discrimination of Chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis. Xiao Z; Dai S; Niu Y; Yu H; Zhu J; Tian H; Gu Y J Food Sci; 2011 Oct; 76(8):C1125-35. PubMed ID: 22417575 [TBL] [Abstract][Full Text] [Related]
15. Exploring the potentialities of comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry to distinguish bivalve species: Comparison of two clam species (Venerupis decussata and Venerupis philippinarum). Rocha SM; Freitas R; Cardoso P; Santos M; Martins R; Figueira E J Chromatogr A; 2013 Nov; 1315():152-61. PubMed ID: 24084002 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of different solid-phase microextraction fibres for differentiation of selected Madeira island fruits based on their volatile metabolite profile--identification of novel compounds. Pereira J; Pereira J; Câmara JS Talanta; 2011 Jan; 83(3):899-906. PubMed ID: 21147335 [TBL] [Abstract][Full Text] [Related]
18. Species and Geographical Origins Discrimination of Porcini Mushrooms Based on FT-IR Spectroscopy and Mineral Elements Combined with Sparse Partial Least Square-Discriminant Analysis. Wang Y; Li J; Liu H; Fan M; Wang Y J Food Sci; 2019 Aug; 84(8):2112-2120. PubMed ID: 31313310 [TBL] [Abstract][Full Text] [Related]
19. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines. Paula Barros E; Moreira N; Elias Pereira G; Leite SG; Moraes Rezende C; Guedes de Pinho P Talanta; 2012 Nov; 101():177-86. PubMed ID: 23158309 [TBL] [Abstract][Full Text] [Related]
20. Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer: A pilot study. Struck-Lewicka W; Kordalewska M; Bujak R; Yumba Mpanga A; Markuszewski M; Jacyna J; Matuszewski M; Kaliszan R; Markuszewski MJ J Pharm Biomed Anal; 2015; 111():351-61. PubMed ID: 25684700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]