BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24274330)

  • 1. New insights of aquaporin 5 in the pathogenesis of high altitude pulmonary edema.
    She J; Bi J; Tong L; Song Y; Bai C
    Diagn Pathol; 2013 Nov; 8():193. PubMed ID: 24274330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress failure plays a major role in the development of high-altitude pulmonary oedema in rats.
    Bai C; She J; Goolaerts A; Song Y; Shen C; Shen J; Hong Q
    Eur Respir J; 2010 Mar; 35(3):584-91. PubMed ID: 19741034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solnatide Demonstrates Profound Therapeutic Activity in a Rat Model of Pulmonary Edema Induced by Acute Hypobaric Hypoxia and Exercise.
    Zhou Q; Wang D; Liu Y; Yang X; Lucas R; Fischer B
    Chest; 2017 Mar; 151(3):658-667. PubMed ID: 27815150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KGF-2 targets alveolar epithelia and capillary endothelia to reduce high altitude pulmonary oedema in rats.
    She J; Goolaerts A; Shen J; Bi J; Tong L; Gao L; Song Y; Bai C
    J Cell Mol Med; 2012 Dec; 16(12):3074-84. PubMed ID: 22568566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathogenesis of high-altitude pulmonary edema: inflammation is not an etiologic factor.
    Swenson ER; Maggiorini M; Mongovin S; Gibbs JS; Greve I; Mairbäurl H; Bärtsch P
    JAMA; 2002 May; 287(17):2228-35. PubMed ID: 11980523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-altitude pulmonary edema.
    Swenson ER; Bärtsch P
    Compr Physiol; 2012 Oct; 2(4):2753-73. PubMed ID: 23720264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological aspects of high-altitude pulmonary edema.
    Bärtsch P; Mairbäurl H; Maggiorini M; Swenson ER
    J Appl Physiol (1985); 2005 Mar; 98(3):1101-10. PubMed ID: 15703168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does High Alveolar Fluid Reabsorption Prevent HAPE in Individuals with Exaggerated Pulmonary Hypertension in Hypoxia?
    Betz T; Dehnert C; Bärtsch P; Schommer K; Mairbäurl H
    High Alt Med Biol; 2015 Dec; 16(4):283-9. PubMed ID: 26258866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pig model of high altitude pulmonary edema.
    Kleinsasser A; Levin DL; Loeckinger A; Hopkins SR
    High Alt Med Biol; 2003; 4(4):465-74. PubMed ID: 14672549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of aquaporin 5 aggravates acute lung injury induced by Pseudomonas aeruginosa.
    Zhang ZQ; Song YL; Chen ZH; Shen Y; Bai CX
    J Trauma; 2011 Nov; 71(5):1305-11. PubMed ID: 21502879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of neutrophil myeloperoxidase in the development and progression of high-altitude pulmonary edema.
    Zhang H; Wang X; Liu J; Zhang Y; Ka M; Ma Y; Xu J; Zhang W
    Biochem Biophys Res Commun; 2024 Apr; 703():149681. PubMed ID: 38382360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron Microscopy Observation of Human Pulmonary Ultrastructure in Two Patients with High-Altitude Pulmonary Edema.
    Droma Y; Kato A; Ichiyama T; Kobayashi N; Honda T; Uehara T; Hanaoka M
    High Alt Med Biol; 2017 Sep; 18(3):288-291. PubMed ID: 28876136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Update: High altitude pulmonary edema.
    Bärtsch P; Swenson ER; Maggiorini M
    Adv Exp Med Biol; 2001; 502():89-106. PubMed ID: 11950158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-altitude pulmonary edema: from exaggerated pulmonary hypertension to a defect in transepithelial sodium transport.
    Scherrer U; Sartori C; Lepori M; Allemann Y; Duplain H; Trueb L; Nicod P
    Adv Exp Med Biol; 1999; 474():93-107. PubMed ID: 10634996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The lung at high altitude: bronchoalveolar lavage in acute mountain sickness and pulmonary edema.
    Schoene RB; Swenson ER; Pizzo CJ; Hackett PH; Roach RC; Mills WJ; Henderson WR; Martin TR
    J Appl Physiol (1985); 1988 Jun; 64(6):2605-13. PubMed ID: 3403445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxic preconditioning with cobalt ameliorates hypobaric hypoxia induced pulmonary edema in rat.
    Shukla D; Saxena S; Purushothaman J; Shrivastava K; Singh M; Shukla S; Malhotra VK; Mustoori S; Bansal A
    Eur J Pharmacol; 2011 Apr; 656(1-3):101-9. PubMed ID: 21296072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenesis of high altitude pulmonary edema: does alveolar epithelial lining fluid vascular endothelial growth factor exacerbate capillary leak?
    Kaner RJ; Crystal RG
    High Alt Med Biol; 2004; 5(4):399-409. PubMed ID: 15671629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling the interactions among BMPR-2, ALK-1 and 5-HTT genes in the pathophysiology of HAPE.
    Ali Z; Waseem M; Kumar R; Pandey P; Mohammad G; Qadar Pasha MA
    Gene; 2016 Aug; 588(2):163-72. PubMed ID: 27196063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Pathophysiology, prevention and therapy of altitude pulmonary edema].
    Oelz O; Maggiorini M; Ritter M; Noti C; Waber U; Vock P; Bärtsch P
    Schweiz Med Wochenschr; 1992 Aug; 122(31-32):1151-8. PubMed ID: 1496342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deregulated hypoxic response in myeloid cells: A model for high-altitude pulmonary oedema (HAPE).
    Gojkovic M; Darmasaputra GS; Veliça P; Rundqvist H; Johnson RS
    Acta Physiol (Oxf); 2020 Jun; 229(2):e13461. PubMed ID: 32129933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.