These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 24274590)

  • 1. Reactivity differences of combined and free amino acids: quantifying the relationship between three-dimensional protein structure and singlet oxygen reaction rates.
    Lundeen RA; McNeill K
    Environ Sci Technol; 2013 Dec; 47(24):14215-23. PubMed ID: 24274590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect photodegradation of dissolved free amino acids: the contribution of singlet oxygen and the differential reactivity of DOM from various sources.
    Boreen AL; Edhlund BL; Cotner JB; McNeill K
    Environ Sci Technol; 2008 Aug; 42(15):5492-8. PubMed ID: 18754466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Indirect Photochemical Transformation of Dissolved Combined Amino Acids through the Use of Systematically Designed Histidine-Containing Oligopeptides.
    Chu C; Lundeen RA; Sander M; McNeill K
    Environ Sci Technol; 2015 Nov; 49(21):12798-807. PubMed ID: 26425803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein reactivity with singlet oxygen: Influence of the solvent exposure of the reactive amino acid residues.
    Sjöberg B; Foley S; Staicu A; Pascu A; Pascu M; Enescu M
    J Photochem Photobiol B; 2016 Jun; 159():106-10. PubMed ID: 27045278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter.
    Chu C; Lundeen RA; Remucal CK; Sander M; McNeill K
    Environ Sci Technol; 2015 May; 49(9):5511-9. PubMed ID: 25827214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photooxidation of the Antimicrobial, Nonribosomal Peptide Bacitracin A by Singlet Oxygen under Environmentally Relevant Conditions.
    Lundeen RA; Chu C; Sander M; McNeill K
    Environ Sci Technol; 2016 Aug; 50(16):8586-95. PubMed ID: 27128169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum.
    Satchell JF; Malby RL; Luo CS; Adisa A; Alpyurek AE; Klonis N; Smith BJ; Tilley L; Colman PM
    Acta Crystallogr D Biol Crystallogr; 2005 Sep; 61(Pt 9):1213-21. PubMed ID: 16131754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution.
    Charron C; Talfournier F; Isupov MN; Littlechild JA; Branlant G; Vitoux B; Aubry A
    J Mol Biol; 2000 Mar; 297(2):481-500. PubMed ID: 10715215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of two positively charged residues of Chlamydomonas reinhardtii glyceraldehyde-3-phosphate dehydrogenase in the assembly process of a bi-enzyme complex involved in CO2 assimilation.
    Graciet E; Mulliert G; Lebreton S; Gontero B
    Eur J Biochem; 2004 Dec; 271(23-24):4737-44. PubMed ID: 15606760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Isupov MN; Fleming TM; Dalby AR; Crowhurst GS; Bourne PC; Littlechild JA
    J Mol Biol; 1999 Aug; 291(3):651-60. PubMed ID: 10448043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of a Zn(Cys)2(His)2 Zinc Finger with Singlet Oxygen: Oxidation Directed toward Cysteines but not Histidines.
    Lebrun V; Tron A; Lebrun C; Latour JM; McClenaghan ND; Sénèque O
    Chemistry; 2015 Sep; 21(40):14002-10. PubMed ID: 26270157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure basis for the regulation of glyceraldehyde-3-phosphate dehydrogenase activity via the intrinsically disordered protein CP12.
    Matsumura H; Kai A; Maeda T; Tamoi M; Satoh A; Tamura H; Hirose M; Ogawa T; Kizu N; Wadano A; Inoue T; Shigeoka S
    Structure; 2011 Dec; 19(12):1846-54. PubMed ID: 22153507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation and Site-specific Oxidation of Aquatic Extracellular Bacterial Leucine Aminopeptidase by Singlet Oxygen.
    Egli CM; Stravs MA; Janssen EML
    Environ Sci Technol; 2020 Nov; 54(22):14403-14412. PubMed ID: 33146524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemiluminescence associated with singlet oxygen reactions with amino acids, peptides and proteins.
    Alarcón E; Henríquez C; Aspée A; Lissi EA
    Photochem Photobiol; 2007; 83(3):475-80. PubMed ID: 17034271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 Angstroms Resolution.
    Tanner JJ; Hecht RM; Krause KL
    Biochemistry; 1996 Feb; 35(8):2597-609. PubMed ID: 8611563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singlet Oxygen Photooxidation of Peptidic Oxazoles and Thiazoles.
    Manfrin A; Borduas-Dedekind N; Lau K; McNeill K
    J Org Chem; 2019 Mar; 84(5):2439-2447. PubMed ID: 30681338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study of glyceraldehyde-3-phosphate dehydrogenase of Entamoeba histolytica: implications for structure-based drug design.
    Kundu S; Roy D
    J Biomol Struct Dyn; 2007 Aug; 25(1):25-33. PubMed ID: 17676935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysozyme oxidation by singlet molecular oxygen: Peptide characterization using [
    Marques EF; Medeiros MHG; Di Mascio P
    J Mass Spectrom; 2017 Nov; 52(11):739-751. PubMed ID: 28801970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of the interaction site of CP12 with glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii. Functional consequences for glyceraldehyde-3-phosphate dehydrogenase.
    Lebreton S; Andreescu S; Graciet E; Gontero B
    FEBS J; 2006 Jul; 273(14):3358-69. PubMed ID: 16803460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+.
    Didierjean C; Rahuel-Clermont S; Vitoux B; Dideberg O; Branlant G; Aubry A
    J Mol Biol; 1997 May; 268(4):739-59. PubMed ID: 9175858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.