These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24274592)

  • 1. Flat flow profiles achieved with microfluidics generated by redox-magnetohydrodynamics.
    Sahore V; Fritsch I
    Anal Chem; 2013 Dec; 85(24):11809-16. PubMed ID: 24274592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(3,4-ethylenedioxythiophene)-Modified Electrodes for Microfluidics Pumping with Redox-Magnetohydrodynamics: Improving Compatibility for Broader Applications by Eliminating Addition of Redox Species to Solution.
    Nash CK; Fritsch I
    Anal Chem; 2016 Feb; 88(3):1601-9. PubMed ID: 26631414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations of redox magnetohydrodynamic fluid flow at microelectrode arrays using microbeads.
    Anderson EC; Weston MC; Fritsch I
    Anal Chem; 2010 Apr; 82(7):2643-51. PubMed ID: 20210341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.
    Cheah LT; Fritsch I; Haswell SJ; Greenman J
    Biotechnol Bioeng; 2012 Jul; 109(7):1827-34. PubMed ID: 22271160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: toward multiple, parallel analyses.
    Sahore V; Fritsch I
    Anal Chem; 2014 Oct; 86(19):9405-11. PubMed ID: 25171501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximizing flow velocities in redox-magnetohydrodynamic microfluidics using the transient faradaic current.
    Weston MC; Nash CK; Homesley JJ; Fritsch I
    Anal Chem; 2012 Nov; 84(21):9402-9. PubMed ID: 23057608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D imaging of flow patterns in an internally-pumped microfluidic device: redox magnetohydrodynamics and electrochemically-generated density gradients.
    Gao F; Kreidermacher A; Fritsch I; Heyes CD
    Anal Chem; 2013 May; 85(9):4414-22. PubMed ID: 23537496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-magnetohydrodynamic microfluidics without channels and compatible with electrochemical detection under immunoassay conditions.
    Weston MC; Nash CK; Fritsch I
    Anal Chem; 2010 Sep; 82(17):7068-72. PubMed ID: 20681513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of paired, bonded NdFeB magnets in redox magnetohydrodynamics.
    Arumugam PU; Clark EA; Fritsch I
    Anal Chem; 2005 Feb; 77(4):1167-71. PubMed ID: 15859001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high current density DC magnetohydrodynamic (MHD) micropump.
    Homsy A; Koster S; Eijkel JC; van den Berg A; Lucklum F; Verpoorte E; de Rooij NF
    Lab Chip; 2005 Apr; 5(4):466-71. PubMed ID: 15791346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Liquid-Metal Based Spiral Magnetohydrodynamic Micropump.
    Zhou X; Gao M; Gui L
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing redox magnetohydrodynamic-induced convection for enhancement of stripping analysis.
    Anderson EC; Fritsch I
    Anal Chem; 2006 Jun; 78(11):3745-51. PubMed ID: 16737232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox magnetohydrodynamic enhancement of stripping voltammetry: toward portable analysis using disposable electrodes, permanent magnets, and small volumes.
    Weston MC; Anderson EC; Arumugam PU; Narasimhan PY; Fritsch I
    Analyst; 2006 Dec; 131(12):1322-31. PubMed ID: 17124540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of the flow induced by artificial cilia.
    Hussong J; Schorr N; Belardi J; Prucker O; RĂ¼he J; Westerweel J
    Lab Chip; 2011 Jun; 11(12):2017-22. PubMed ID: 21614349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox magnetohydrodynamics enhancement of stripping voltammetry of lead(II), cadmium(II) and zinc(II) ions using 1,4-benzoquinone as an alternative pumping species.
    Ensafi AA; Nazari Z; Fritsch I
    Analyst; 2012 Jan; 137(2):424-31. PubMed ID: 22116833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.