These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24274662)

  • 1. Aluminum for plasmonics.
    Knight MW; King NS; Liu L; Everitt HO; Nordlander P; Halas NJ
    ACS Nano; 2014 Jan; 8(1):834-40. PubMed ID: 24274662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walking the Walk: A Giant Step toward Sustainable Plasmonics.
    DeSantis CJ; McClain MJ; Halas NJ
    ACS Nano; 2016 Nov; 10(11):9772-9775. PubMed ID: 27934072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.
    Li W; Qiu Y; Zhang L; Jiang L; Zhou Z; Chen H; Zhou J
    Biosens Bioelectron; 2016 May; 79():500-7. PubMed ID: 26748367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pushing the high-energy limit of plasmonics.
    Bisio F; Proietti Zaccaria R; Moroni R; Maidecchi G; Alabastri A; Gonella G; Giglia A; Andolfi L; Nannarone S; Mattera L; Canepa M
    ACS Nano; 2014 Sep; 8(9):9239-47. PubMed ID: 25181497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics.
    Liu HW; Lin FC; Lin SW; Wu JY; Chou BT; Lai KJ; Lin SD; Huang JS
    ACS Nano; 2015 Apr; 9(4):3875-86. PubMed ID: 25848830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film.
    Sobhani A; Manjavacas A; Cao Y; McClain MJ; García de Abajo FJ; Nordlander P; Halas NJ
    Nano Lett; 2015 Oct; 15(10):6946-51. PubMed ID: 26383818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss aluminum epitaxial film for scalable and sustainable plasmonics: direct comparison with silver epitaxial film.
    Raja SS; Cheng CW; Gwo S
    Nanoscale; 2020 Dec; 12(46):23809-23816. PubMed ID: 33237103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material effects on V-nanoantenna performance.
    Earl SK; Gómez DE; James TD; Davis TJ; Roberts A
    Nanoscale; 2015 Mar; 7(9):4179-86. PubMed ID: 25670157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized and propagating plasmons in metal films with nanoholes.
    Schwind M; Kasemo B; Zorić I
    Nano Lett; 2013 Apr; 13(4):1743-50. PubMed ID: 23484456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminum Nanoholes for Optical Biosensing.
    Barrios CA; Canalejas-Tejero V; Herranz S; Urraca J; Moreno-Bondi MC; Avella-Oliver M; Maquieira Á; Puchades R
    Biosensors (Basel); 2015 Jul; 5(3):417-31. PubMed ID: 26184330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optomechanics of Single Aluminum Nanodisks.
    Su MN; Dongare PD; Chakraborty D; Zhang Y; Yi C; Wen F; Chang WS; Nordlander P; Sader JE; Halas NJ; Link S
    Nano Lett; 2017 Apr; 17(4):2575-2583. PubMed ID: 28301725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epitaxial Growth of Atomically Smooth Aluminum on Silicon and Its Intrinsic Optical Properties.
    Cheng F; Su PH; Choi J; Gwo S; Li X; Shih CK
    ACS Nano; 2016 Nov; 10(11):9852-9860. PubMed ID: 27656756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting.
    Lee M; Kim JU; Lee KJ; Ahn S; Shin YB; Shin J; Park CB
    ACS Nano; 2015 Jun; 9(6):6206-13. PubMed ID: 26046384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-tailored plasmonic nanoparticles for biosensing applications.
    Lee JH; Hwang JH; Nam JM
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(1):96-109. PubMed ID: 22927287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses.
    De Luca A; Grzelczak MP; Pastoriza-Santos I; Liz-Marzán LM; La Deda M; Striccoli M; Strangi G
    ACS Nano; 2011 Jul; 5(7):5823-9. PubMed ID: 21682326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning of the surface plasmon resonance of aluminum nanoshell near-infrared regimes.
    Pathak NK; Parthasarathi ; Kumar PS; Sharma RP
    Phys Chem Chem Phys; 2019 May; 21(18):9441-9449. PubMed ID: 31012464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays.
    Maidecchi G; Gonella G; Proietti Zaccaria R; Moroni R; Anghinolfi L; Giglia A; Nannarone S; Mattera L; Dai HL; Canepa M; Bisio F
    ACS Nano; 2013 Jul; 7(7):5834-41. PubMed ID: 23725571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization and optical properties of ligand-protected indium nanoparticles.
    George A; Choudhary HK; Satpati B; Mandal S
    Phys Chem Chem Phys; 2015 Mar; 17(11):7109-13. PubMed ID: 25670481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.