BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24274810)

  • 21. Label-free fluorescent DNA biosensors based on metallointercalators and nanomaterials.
    Shi S; Wang X; Sun W; Wang X; Yao T; Ji L
    Methods; 2013 Dec; 64(3):305-14. PubMed ID: 23867341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA nanosheet as an excellent fluorescence anisotropy amplification platform for accurate and sensitive biosensing.
    Liu YX; Xiao X; Li CH; Men C; Ye QC; Lv WY; Li YF; Huang CZ; Zhen SJ
    Talanta; 2020 May; 211():120730. PubMed ID: 32070579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA.
    Zhang Y; Zheng B; Zhu C; Zhang X; Tan C; Li H; Chen B; Yang J; Chen J; Huang Y; Wang L; Zhang H
    Adv Mater; 2015 Feb; 27(5):935-9. PubMed ID: 25504749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene oxide-based biosensor for sensitive fluorescence detection of DNA based on exonuclease III-aided signal amplification.
    Zhao XH; Ma QJ; Wu XX; Zhu X
    Anal Chim Acta; 2012 May; 727():67-70. PubMed ID: 22541825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and pi-stacked T-Hg(II)-T base pairs.
    Guo L; Hu H; Sun R; Chen G
    Talanta; 2009 Aug; 79(3):775-9. PubMed ID: 19576444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules.
    Dong H; Gao W; Yan F; Ji H; Ju H
    Anal Chem; 2010 Jul; 82(13):5511-7. PubMed ID: 20524633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification.
    Xi Q; Zhou DM; Kan YY; Ge J; Wu ZK; Yu RQ; Jiang JH
    Anal Chem; 2014 Feb; 86(3):1361-5. PubMed ID: 24446758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid.
    Su YT; Lan GY; Chen WY; Chang HT
    Anal Chem; 2010 Oct; 82(20):8566-72. PubMed ID: 20873802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-labeled hairpin probe for highly specific and sensitive detection of lead(II) based on the fluorescence quenching of deoxyguanosine and G-quartet.
    Wang W; Jin Y; Zhao Y; Yue X; Zhang C
    Biosens Bioelectron; 2013 Mar; 41():137-42. PubMed ID: 22954528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions: implications for selection, design, and applications of signaling aptamers and signaling deoxyribozymes.
    Rupcich N; Chiuman W; Nutiu R; Mei S; Flora KK; Li Y; Brennan JD
    J Am Chem Soc; 2006 Jan; 128(3):780-90. PubMed ID: 16417367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform.
    Ma TY; Tang Y; Dai S; Qiao SZ
    Small; 2014 Jun; 10(12):2382-9. PubMed ID: 24596304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amplified fluorescence detection of mercury(II) ions (Hg2+) using target-induced DNAzyme cascade with catalytic and molecular beacons.
    Qi L; Zhao Y; Yuan H; Bai K; Zhao Y; Chen F; Dong Y; Wu Y
    Analyst; 2012 Jun; 137(12):2799-805. PubMed ID: 22551984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel cationic triazatetrabenzcorrole: selective detection of mercury(II) by nucleic acid-induced aggregation.
    Zhou Y; Deng M; Du Y; Yan S; Huang R; Weng X; Yang C; Zhang X; Zhou X
    Analyst; 2011 Mar; 136(5):955-61. PubMed ID: 21157605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A versatile graphene-based fluorescence "on/off" switch for multiplex detection of various targets.
    Zhang M; Yin BC; Tan W; Ye BC
    Biosens Bioelectron; 2011 Mar; 26(7):3260-5. PubMed ID: 21255996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple and sensitive fluorescent sensing platform for Hg²+ ions assay based on G-quenching.
    Hu P; Jin L; Zhu C; Dong S
    Talanta; 2011 Jul; 85(1):713-7. PubMed ID: 21645763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoinduced electron transfer (PET) based Zn2+ fluorescent probe: transformation of turn-on sensors into ratiometric ones with dual emission in acetonitrile.
    Ashokkumar P; Ramakrishnan VT; Ramamurthy P
    J Phys Chem A; 2011 Dec; 115(50):14292-9. PubMed ID: 22066705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MoS2 nanosheets as an effective fluorescence quencher for DNA methyltransferase activity detection.
    Deng H; Yang X; Gao Z
    Analyst; 2015 May; 140(9):3210-5. PubMed ID: 25760806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatically directed visual fluorescence response of DNA-functionalized monolithic hydrogels for highly sensitive Hg²+ detection.
    Joseph KA; Dave N; Liu J
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):733-9. PubMed ID: 21323356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A homogeneous fluorescence sensing platform with water-soluble carbon nanoparticles for detection of microRNA and nuclease activity.
    Wang L; Cheng Y; Wang H; Li Z
    Analyst; 2012 Aug; 137(16):3667-72. PubMed ID: 22801584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles.
    Wu ZS; Jiang JH; Fu L; Shen GL; Yu RQ
    Anal Biochem; 2006 Jun; 353(1):22-9. PubMed ID: 16626619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.