These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24274822)

  • 1. Self-aligned formation of sub 1 nm gaps utilizing electromigration during metal deposition.
    Naitoh Y; Ohata T; Matsushita R; Okawa E; Horikawa M; Oyama M; Mukaida M; Wang DF; Kiguchi M; Tsukagoshi K; Ishida T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12869-75. PubMed ID: 24274822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel fabrication of polymer-protected nanogaps.
    Zhang H; Thompson CV; Stellacci F; Thong JT
    Nanotechnology; 2010 Sep; 21(38):385303. PubMed ID: 20739741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled electroplating and electromigration in nickel electrodes for nanogap formation.
    Valladares Lde L; Felix LL; Dominguez AB; Mitrelias T; Sfigakis F; Khondaker SI; Barnes CH; Majima Y
    Nanotechnology; 2010 Nov; 21(44):445304. PubMed ID: 20935352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-formation of sub-10 nm nanogaps based on silicidation.
    Tang X; Francis LA; Dutu CA; Reckinger N; Raskin JP
    Nanotechnology; 2014 Mar; 25(11):115201. PubMed ID: 24561553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large area metal nanowire arrays with tunable sub-20 nm nanogaps.
    Le Thi Ngoc L; Jin M; Wiedemair J; van den Berg A; Carlen ET
    ACS Nano; 2013 Jun; 7(6):5223-34. PubMed ID: 23647306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconnectable sub-5 nm nanogaps in ultralong gold nanowires.
    Xiang C; Kim JY; Penner RM
    Nano Lett; 2009 May; 9(5):2133-8. PubMed ID: 19366192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-aligned nanogaps on multilayer electrodes for fluidic and magnetic assembly of carbon nanotubes.
    Shim JS; Yun YH; Cho W; Shanov V; Schulz MJ; Ahn CH
    Langmuir; 2010 Jul; 26(14):11642-7. PubMed ID: 20553000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control parameters for fabrication of single-electron transistors using field-emission-induced electromigration.
    Akimoto S; Ito M; Ueno S; Shirakashi J
    J Nanosci Nanotechnol; 2013 Feb; 13(2):993-6. PubMed ID: 23646557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.
    Cai H; Meng Q; Zhao H; Li M; Dai Y; Lin Y; Ding H; Pan N; Tian Y; Luo Y; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20189-20195. PubMed ID: 29799180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clean electromigrated nanogaps imaged by transmission electron microscopy.
    Strachan DR; Smith DE; Fischbein MD; Johnston DE; Guiton BS; Drndić M; Bonnell DA; Johnson AT
    Nano Lett; 2006 Mar; 6(3):441-4. PubMed ID: 16522038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wafer-Scale and Cost-Effective Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing.
    Zhao Q; Yang H; Nie B; Luo Y; Shao J; Li G
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3580-3590. PubMed ID: 34983178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wet chemical synthesis of soluble gold nanogaps.
    Jain T; Tang Q; Bjørnholm T; Nørgaard K
    Acc Chem Res; 2014 Jan; 47(1):2-11. PubMed ID: 23944385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules.
    Tian JH; Yang Y; Liu B; Schöllhorn B; Wu DY; Maisonhaute E; Muns AS; Chen Y; Amatore C; Tao NJ; Tian ZQ
    Nanotechnology; 2010 Jul; 21(27):274012. PubMed ID: 20571199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas.
    Duan H; Hu H; Hui HK; Shen Z; Yang JK
    Nanotechnology; 2013 May; 24(18):185301. PubMed ID: 23579281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Verification of unzipping models of electromigration in gold nanocontacts by in situ high-resolution transmission electron microscopy.
    Kizuka T; Kodama S; Matsuda T
    Nanotechnology; 2010 Dec; 21(49):495706. PubMed ID: 21079293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From 1D to 3D: Tunable Sub-10 nm Gaps in Large Area Devices.
    Zhou Z; Zhao Z; Yu Y; Ai B; Möhwald H; Chiechi RC; Yang JK; Zhang G
    Adv Mater; 2016 Apr; 28(15):2956-63. PubMed ID: 26890027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic layer deposition assisted fabrication of large-scale metal nanogaps for surface enhanced Raman scattering.
    Cheng T; Zhu Z; Wang X; Zhu L; Li A; Jiang L; Cao Y
    Nanotechnology; 2023 Apr; 34(26):. PubMed ID: 36996801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-layer nanogap array for high-performance SERS substrate.
    Seol ML; Kim JH; Kang T; Im H; Kim S; Kim B; Choi YK
    Nanotechnology; 2011 Jun; 22(23):235303. PubMed ID: 21483043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocracking and metallization doubly defined large-scale 3D plasmonic sub-10 nm-gap arrays as extremely sensitive SERS substrates.
    Pan R; Yang Y; Wang Y; Li S; Liu Z; Su Y; Quan B; Li Y; Gu C; Li J
    Nanoscale; 2018 Feb; 10(7):3171-3180. PubMed ID: 29364303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.