BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24275107)

  • 1. A three-step test of phosphate sorption efficiency of potential agricultural drainage filter materials.
    Lyngsie G; Borggaard OK; Hansen HC
    Water Res; 2014 Mar; 51():256-65. PubMed ID: 24275107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate sorption by three potential filter materials as assessed by isothermal titration calorimetry.
    Lyngsie G; Penn CJ; Hansen HC; Borggaard OK
    J Environ Manage; 2014 Oct; 143():26-33. PubMed ID: 24833525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term phosphorus removal by Ca and Fe-rich drainage filter materials under variable flow and inlet concentrations.
    Pugliese L; Canga E; Hansen HCB; Kjærgaard C; Heckrath GJ; Poulsen TG
    Water Res; 2023 Dec; 247():120792. PubMed ID: 37925858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of phosphate sorption in lowland soils under oxic and anoxic conditions.
    Heiberg L; Pedersen TV; Jensen HS; Kjaergaard C; Hansen HC
    J Environ Qual; 2010; 39(2):734-43. PubMed ID: 20176846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing phosphorus (P) losses from drained agricultural fields with iron coated sand (- glauconite) filters.
    Vandermoere S; Ralaizafisoloarivony NA; Van Ranst E; De Neve S
    Water Res; 2018 Sep; 141():329-339. PubMed ID: 29804019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents.
    Boujelben N; Bouzid J; Elouear Z; Feki M; Jamoussi F; Montiel A
    J Hazard Mater; 2008 Feb; 151(1):103-10. PubMed ID: 17611022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Sorption-desorption of phosphate in wastewater by hydrous iron oxide].
    Xiang XM; Liu Y; Zhou JT; Wang R
    Huan Jing Ke Xue; 2008 Nov; 29(11):3059-63. PubMed ID: 19186802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite.
    Yin H; Yun Y; Zhang Y; Fan C
    J Hazard Mater; 2011 Dec; 198():362-9. PubMed ID: 22088501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings.
    Yaghi N; Hartikainen H
    Chemosphere; 2013 Nov; 93(9):1879-86. PubMed ID: 23866174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of phosphorous to Filtralite-P--the effect of different scales.
    Adám K; Kristine Søvik A; Krogstad T
    Water Res; 2006 Mar; 40(6):1143-54. PubMed ID: 16504238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wollastonite as reactive filter medium for sorption of wastewater ammonium and phosphorus.
    Hedström A
    Environ Technol; 2006 Jul; 27(7):801-9. PubMed ID: 16894824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings.
    Zeng L; Li X; Liu J
    Water Res; 2004 Mar; 38(5):1318-26. PubMed ID: 14975665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment.
    Gustafsson JP; Renman A; Renman G; Poll K
    Water Res; 2008 Jan; 42(1-2):189-97. PubMed ID: 17659317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport-limited kinetics of phosphate retention on iron-coated sand and practical implications.
    Barcala V; Zech A; Osté L; Behrends T
    J Contam Hydrol; 2023 Apr; 255():104160. PubMed ID: 36822030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition.
    Chen J; Kong H; Wu D; Chen X; Zhang D; Sun Z
    J Hazard Mater; 2007 Jan; 139(2):293-300. PubMed ID: 16860931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic.
    Makris KC; Sarkar D; Datta R
    Chemosphere; 2006 Jul; 64(5):730-41. PubMed ID: 16405955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A regenerable potassium and phosphate sorbent system to enhance dialysis efficacy and device portability: an in vitro study.
    Wester M; Simonis F; Gerritsen KG; Boer WH; Wodzig WK; Kooman JP; Joles JA
    Nephrol Dial Transplant; 2013 Sep; 28(9):2364-71. PubMed ID: 23825104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium carbonate phosphate binding ion exchange filtration and accelerated denitrification improve public health standards and combat eutrophication in aquatic ecosystems.
    Yanamadala V
    Water Environ Res; 2005; 77(7):3003-12. PubMed ID: 16381147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption and desorption of phosphorus by shale: batch and column studies.
    Cyrus JS; Reddy GB
    Water Sci Technol; 2010; 61(3):599-606. PubMed ID: 20150695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption.
    Smith E; Naidu R; Alston AM
    J Environ Qual; 2002; 31(2):557-63. PubMed ID: 11931447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.