These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 24275107)

  • 41. Phosphorus removal with by-products in a flow-through setting.
    Stoner D; Penn C; McGrath J; Warren J
    J Environ Qual; 2012; 41(3):654-63. PubMed ID: 22565247
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide.
    Genz A; Kornmüller A; Jekel M
    Water Res; 2004 Sep; 38(16):3523-30. PubMed ID: 15325178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of phosphorus from solution using biogenic iron oxides.
    Rentz JA; Turner IP; Ullman JL
    Water Res; 2009 Apr; 43(7):2029-35. PubMed ID: 19298996
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessing effects of aerobic and anaerobic conditions on phosphorus sorption and retention capacity of water treatment residuals.
    Oliver IW; Grant CD; Murray RS
    J Environ Manage; 2011 Mar; 92(3):960-6. PubMed ID: 21129842
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal and recovery of phosphate from municipal wastewaters using a polymeric anion exchanger bound with hydrated ferric oxide nanoparticles.
    Martin BD; Parsons SA; Jefferson B
    Water Sci Technol; 2009; 60(10):2637-45. PubMed ID: 19923770
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil.
    Gjettermann B; Styczen M; Hansen S; Borggaard OK; Hansen HC
    J Environ Qual; 2007; 36(3):753-63. PubMed ID: 17412910
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aluminum water treatment residuals as permeable reactive barrier sorbents to reduce phosphorus losses.
    Miller ML; Bhadha JH; O'Connor GA; Jawitz JW; Mitchell J
    Chemosphere; 2011 May; 83(7):978-83. PubMed ID: 21377185
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorus removal using Ca-rich hydrated oil shale ash as filter material--the effect of different phosphorus loadings and wastewater compositions.
    Kõiv M; Liira M; Mander U; Mõtlep R; Vohla C; Kirsimäe K
    Water Res; 2010 Oct; 44(18):5232-9. PubMed ID: 20638097
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles.
    Su Y; Cui H; Li Q; Gao S; Shang JK
    Water Res; 2013 Sep; 47(14):5018-26. PubMed ID: 23850213
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent advances in developing innovative sorbents for phosphorus removal-perspective and opportunities.
    Parasana N; Shah M; Unnarkat A
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):38985-39016. PubMed ID: 35304717
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sorption and desorption of atrazine and diuron onto water dispersible soil primary size fractions.
    Wang P; Keller AA
    Water Res; 2009 Mar; 43(5):1448-56. PubMed ID: 19147172
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced arsenic sorption by hydrated iron (III) oxide-coated materials--mechanism and performances.
    Jovanović BM; Vukasinović-Pesić VL; Rajaković LV
    Water Environ Res; 2011 Jun; 83(6):498-506. PubMed ID: 21751708
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Eutrophication decrease: Phosphate adsorption processes in presence of nitrates.
    Boeykens SP; Piol MN; Samudio Legal L; Saralegui AB; Vázquez C
    J Environ Manage; 2017 Dec; 203(Pt 3):888-895. PubMed ID: 28521958
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphorus sorption capacity of filter materials used for on-site wastewater treatment determined in batch experiments-a comparative study.
    Cucarella V; Renman G
    J Environ Qual; 2009; 38(2):381-92. PubMed ID: 19202009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphorus sorption and fraction characteristics in the upper, middle and low reach sediments of the Daliao river systems, China.
    Lin C; Wang Z; He M; Li Y; Liu R; Yang Z
    J Hazard Mater; 2009 Oct; 170(1):278-85. PubMed ID: 19477067
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Factors controlling phosphate interaction with iron oxides.
    Weng L; Van Riemsdijk WH; Hiemstra T
    J Environ Qual; 2012; 41(3):628-35. PubMed ID: 22565244
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Field investigation of advanced filtration for phosphorus removal from constructed treatment wetland effluents.
    Calder N; Anderson BC; Martin DG
    Environ Technol; 2006 Oct; 27(10):1063-71. PubMed ID: 17144255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distribution coefficients of tin in Japanese agricultural soils and the factors affecting tin sorption behavior.
    Nakamaru Y; Uchida S
    J Environ Radioact; 2008 Jun; 99(6):1003-10. PubMed ID: 18164522
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Treatment of membrane concentrates: phosphate removal and reduction of scaling potential.
    Sperlich A; Warschke D; Wegmann C; Ernst M; Jekel M
    Water Sci Technol; 2010; 61(2):301-6. PubMed ID: 20107255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.