These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24275152)

  • 1. Assessment of chromium-contaminated groundwater using a thiosulfate-oxidizing bacteria (TOB) biosensor.
    Qambrani NA; Shin BS; Cho JS; Oh SE
    Chemosphere; 2014 Jun; 104():32-6. PubMed ID: 24275152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor.
    Hassan SH; Van Ginkel SW; Oh SE
    Chemosphere; 2013 Jan; 90(3):965-70. PubMed ID: 22840537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-continuous detection of toxic hexavalent chromium using a sulfur-oxidizing bacteria biosensor.
    Gurung A; Oh SE; Kim KD; Shin BS
    J Environ Manage; 2012 Sep; 106():110-2. PubMed ID: 22647672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Cr6+ by the sulfur oxidizing bacteria biosensor: effect of different physical factors.
    Hassan SH; Van Ginkel SW; Oh SE
    Environ Sci Technol; 2012 Jul; 46(14):7844-8. PubMed ID: 22703119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigation measures for chromium-VI contaminated groundwater - The role of endophytic bacteria in rhizofiltration.
    Dimitroula H; Syranidou E; Manousaki E; Nikolaidis NP; Karatzas GP; Kalogerakis N
    J Hazard Mater; 2015 Jan; 281():114-120. PubMed ID: 25160056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid detection of heavy metal-induced toxicity in water using a fed-batch sulfur-oxidizing bacteria (SOB) bioreactor.
    Eom H; Hwang JH; Hassan SHA; Joo JH; Hur JH; Chon K; Jeon BH; Song YC; Chae KJ; Oh SE
    J Microbiol Methods; 2019 Jun; 161():35-42. PubMed ID: 30978364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forensic investigation of a chromium(VI) groundwater plume in Thiva, Greece.
    Panagiotakis I; Dermatas D; Vatseris C; Chrysochoou M; Papassiopi N; Xenidis A; Vaxevanidou K
    J Hazard Mater; 2015 Jan; 281():27-34. PubMed ID: 25450516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy.
    Slejko FF; Petrini R; Lutman A; Forte C; Ghezzi L
    Isotopes Environ Health Stud; 2019 Mar; 55(1):56-69. PubMed ID: 30621468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexavalent chromium contamination in groundwaters of Thiva Basin, central Greece.
    Tziritis E; Kelepertzis E; Korres G; Perivolaris D; Repani S
    Bull Environ Contam Toxicol; 2012 Nov; 89(5):1073-7. PubMed ID: 22996651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background.
    Kaprara E; Kazakis N; Simeonidis K; Coles S; Zouboulis AI; Samaras P; Mitrakas M
    J Hazard Mater; 2015 Jan; 281():2-11. PubMed ID: 25085618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotope evidence of hexavalent chromium stability in ground water samples.
    Čadková E; Chrastný V
    Chemosphere; 2015 Nov; 138():74-80. PubMed ID: 26037819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of Acidithiobacillus caldus from a sulfur-oxidizing bacterial biosensor and its role in detection of toxic chemicals.
    Hassan SH; Van Ginkel SW; Kim SM; Yoon SH; Joo JH; Shin BS; Jeon BH; Bae W; Oh SE
    J Microbiol Methods; 2010 Aug; 82(2):151-5. PubMed ID: 20580751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin and concentration profile of chromium in a Greek aquifer.
    Dermatas D; Mpouras T; Chrysochoou M; Panagiotakis I; Vatseris C; Linardos N; Theologou E; Boboti N; Xenidis A; Papassiopi N; Sakellariou L
    J Hazard Mater; 2015 Jan; 281():35-46. PubMed ID: 25449969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of carbon stable isotopes to monitor biostimulation and electron donor fate in chromium-contaminated groundwater.
    Bill M; Conrad ME; Faybishenko B; Larsen JT; Geller JT; Borglin SE; Beller HR
    Chemosphere; 2019 Nov; 235():440-446. PubMed ID: 31272004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of chromium III and VI toxicities in water using sulfur-oxidizing bacterial bioassays.
    Qambrani NA; Hwang JH; Oh SE
    Chemosphere; 2016 Oct; 160():342-8. PubMed ID: 27393970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient reduction of Cr(VI) in groundwater by a hybrid electro-Pd process.
    Qian A; Liao P; Yuan S; Luo M
    Water Res; 2014 Jan; 48():326-34. PubMed ID: 24134802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromium speciation in a contaminated groundwater: redox processes and temporal variability.
    Kumar AR; Riyazuddin P
    Environ Monit Assess; 2011 May; 176(1-4):647-62. PubMed ID: 20661772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.
    Mamais D; Noutsopoulos C; Kavallari I; Nyktari E; Kaldis A; Panousi E; Nikitopoulos G; Antoniou K; Nasioka M
    Chemosphere; 2016 Jun; 152():238-44. PubMed ID: 26971177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater.
    Kazakis N; Kantiranis N; Voudouris KS; Mitrakas M; Kaprara E; Pavlou A
    Sci Total Environ; 2015 May; 514():224-38. PubMed ID: 25666283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal concentrations of groundwater in the east of Ergene Basin, Turkey.
    Arkoc O
    Bull Environ Contam Toxicol; 2014 Oct; 93(4):429-33. PubMed ID: 25120257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.